
ECE-210-B HOMEWORK THE LAST
ONNEARLY EVERYTHING

Cat Van West, Spring 2024

Contents

1 Linear Algebra 2

2 Symbolic Manipulation 5

3 Probability 7

4 A Game? 9

A On Gram-Schmidt Orthogonalization 11
A.1 Inner Products . 11
A.2 Norms . 11
A.3 Bases . 12
A.4 Projection . 12
A.5 The Gram-Schmidt Algorithm 13
A.6 This Stuff in Matlab . 13

This is the last assignment for matlab seminar. You’ve done it! Or, well,
you’ve almost done it…

Each problem in this homework counts for some number of points, adding
up to 3.1 total. The sections don’t correspond to individual problems – they’re
just an approximate attempt at organizing this document. Pick as many of the
problems to do as you need to. Some of these are tricky, some of these are useful,
some of these are just fun. Good luck! I will, of course, be available to help.

One note: for this homework, I will not accept resubmissions. You can al-
ways submit new stuff, but not redo problems you’ve already done.

1

1 Linear Algebra

This is, as far as I can tell, a classicmatlab seminar assignment, and shall remain
so. At least I’m not making you all use classes. No line counts this time, but see
how short you can get your functions while keeping style.
Shooting the Schmidt (+0.6) I won’t pick on S. Mintchev as has been done in

earlier years. I think he would consider writing a program to compute
orthonormal bases good practice. Since your matlab skills are so sharp,
you should have no trouble doing so… ;)

1. Create a function called gram_schmidt. The input to the func-
tion should be a 2d matrix, each column of which is assumed to be
linearly independent. Implement Gram-Schmidt to create an or-
thonormal set of vectors from these, and store them in columns in
an outputmatrix (same idea as the input). Matlab’s norm function
might be helpful here.

2. Writing test code is excellent practice in programming, so let’s do
so. Create another function called is_orthonormal, which takes a
single matrix as its input and returns logical 1 (true) if the columns
of that matrix are orthonormal and logical 0 (false) otherwise.
Be careful with this – direct comparison of floating-point numbers
with == is a bad idea. Instead, apply a threshold to the difference
of the two numbers like so: if |x− x̂| < ε then... The eps function
might be useful for deriving ε – with a nice big fudge factor tomake
sure that it actually works.

3. Finally, we’d like to estimate another vector as a linear combination
of these orthonormal vectors (i.e., project a vector onto the space
they generate). Implement a function called ortho_proj which
takes a (column) vector to be estimated and amatrix with orthonor-
mal columns to project onto, and outputs the estimated (column)
vector.
Note: this function might be useful inside gram_schmidt, and us-
ing it there could decrease code duplication. If you like, rewrite
accordingly.

4. Test all of the above on some random complex vectors (created us-
ing rand – these vectors will very likely be linearly independent if
you make them large enough). Test the following cases:
(a) There are more elements in a vector than there are vectors.

2

(b) There are as many elements in a vector as there are vectors.
(c) There are more vectors than there are elements in a vector.
Compare the results – in particular, compare the Euclidean distance
(as a measure of error) between your test vectors and their projec-
tions onto an orthonormal basis.

Bonus Rewrite gram_schmidt so that it also works correctly on a linearly
dependent set of vectors. Test it on such a set to demonstrate this.

De-Gauss, Re-Gauss (+0.2) Let’s see what projecting an actual signal vector
looks like.

1. Uniformly sample sin(x) on [0, 2π]with 1000 points. Also generate
five Gaussians by sampling

1√
2πσ2

exp
−(x− μ)2

2σ2

over the same interval, with σ = 1 and μ ∈ {0, π/2, π, 3π/2, 2π}.
Matlab’s ndgrid might be helpful for doing this compactly.

2. Use gram_schmidt to create an orthonormal set of vectors from
the Gaussians, and ortho_proj to estimate the sinusoid from that
set.
Create a 2 × 1 subplot (using subplot or tiledlayout). Plot the
original and the estimated sinusoid together on the upper plot, and
the orthonormal basis function on the lower plot. Give all plots
meaningful labels, titles, and legends.

My Head is Spinning (+0.3) It is a somewhat remarkable fact that most sets
of five points uniquely determine a conic section. It is perhaps a more
remarkable fact that there is a simple closed-form solution for the section
in question! (Well, I say “simple”, but…)
The idea is this: given a conic section with equation

a1x2 + a2y2 + a3xy+ a4x+ a5y = 1,

and five points on it, this equation may be used to derive a system of
five linear equations yielding the parameters in question. (See here for a
relevant question and a few links.) So let’s do this.

1. Create a function generate_points which creates a set of five ran-
dom points in some (bounded!) region of the plane.

3

https://math.stackexchange.com/questions/632442/calculate-ellipse-from-points

2. Create another function called fit_conic which takes five points
in the plane, (x1, y1) through (x5, y5), and solves the linear system

x21 y21 x1y1 x1 y1
x22 y22 x2y2 x2 y2
x23 y23 x3y3 x3 y3
x24 y24 x4y4 x4 y4
x25 y25 x5y5 x5 y5



a1
a2
a3
a4
a5

 =


1
1
1
1
1


(a perfect candidate for matrix left-divide!) for a1, . . . , a5.

3. Test this out on some random sets of points, and plot both the points
and the ellipses. There are severalways to plot this conic –fimplicit
or contour both come to mind.
Note: it is possible for the coefficient matrix in the conic fit to be
singular (i.e., not invertible). Come up with a set of points that you
thinkwill cause this and see what happens if you try to fit a conic to
them.

Bonus (A big one!) Use appdesigner tomake an interactive app that live-
fits this curve to five moveable points! I will really appreciate this. I
am also very easily entertained.

Bonus (Because why not?) Extend this concept to a curve of your choosing
in 3-space.

4

2 Symbolic Manipulation

Many of these problems give results as…well, not plots. Don’t worry about
printing them (it will not be readable if you’re actually using matlab), just keep
them stored somewhere convenient. And definitely discuss them in the com-
ments.

Cheating at Calculus (+0.6) Solve the following problems using the symbolic
toolbox. Revel in the ease your computer exhibits in munching on these
equations.

1. Find all analytic solutions (see dsolve) to the differential equation

dy
dx

= y2x3.

Plot a few of these solutions using fplot for different values of the
parameter (one of the solutions should have a parameter). You can
use subs to set said parameter.
Note: you’ll have to declare the constant parameter as a symbol us-
ing syms before you can refer to it!

2. Find the Laplace transform of

h(t) = 5δ(t) + U(t) + e−t/2 sin 3t.

(U(t) represents the unit step; either use heaviside or, if you’re
feeling adventurous, define it yourself with piecewise). Also com-
pute it by hand (or look it up) and compare. Take the inverse Laplace
transform using ilaplace and explain why it’s not quite y(t)!

3. Given the vector field

F =

(3 + a2)xz
zey

ey − x2eπa


where a is a free parameter, and the closed path in R3

C : r(t) =

(1 − 2 cos t) cos 3t
(1 − 2 cos t) sin 3t

sin t

 , −π ⩽ t ⩽ π,

5

find ∮
C
F · dr =

∫ π

−π
F(r(t)) · r′(t) dt

and plot it as a function of a ∈ [−3, 1] using fplot.
Note: you may want to declare your symbols as F(x, y, z) r
rather than F(x, y, z) r(t), as this makes indexing r(t) easier.

Bonus Is there a value of a for which F is conservative (i.e., its line integral
about any closed path is zero)?

It Ain’t Magic (+0.2) You’re either really happy or really pissed off at this point.
Hopefully an exposition of the shortcomings of the symbolic toolbox
doesn’t make things worse.

1. Create the symbolic function

f(x, y) = 1 − x2 − y2.

Use matlabFunction to create its numeric counterpart function.
(Remember how I said I wouldn’t tell you how to do this? I lied.)

2. Integrate f(x, y) over the unit disk using both
(a) int and symbolic bounds (e.g., ±

√
1 − x2, …), and

(b) numerical approximation (e.g, trapz and a 100 × 100 grid).
Time both operations using tic and toc. Compare the answers
(using double to first convert the symbolic answer into a numeric
one, if you like).

6

3 Probability

No one really tried this last year for what should be obvious reasons – it’s a
bear. This deals with probability and stochastic processes both symbolically
and numerically… which is fun for some people (i.e., me). Kudos to you if you
attempt it!

Random Thoughts (+0.7) A Poisson process is (as I’m sure you definitely re-
call) a process in which discrete “events” occur in continuous time, at
some mean rate λ of events per unit time. A Poisson random variable
measures how many of these events are likely to occur in that unit of
time, and has the p.m.f.

fPoisson(x) =
λxe−λ

x!
, x = 0, 1, 2, . . .

The exponential distribution measures the wait time to the first change,
and has the p.d.f.

fexponential(x) = λe−λx, x > 0.

Both of these distributions are useful in communications theory (for ex-
ample, bit errors are approximately Poisson distributed if you have a good
channel). Let’s play with them.

1. Speaking of bit errors: suppose you have a channel with a bit error
rate of about 1 in 10,000. Simulate this channel by simulating sev-
eral (read: very many several) transmissions through this channel.
(One way to do this would be to sample from the uniform distri-
bution and threshold against 9,999/10,000 to yield 1s where bit errors
occur.)

2. Measure both
(a) the number of errors in the first 30,000 bits for each transmis-

sion, as well as
(b) the time until the first error (might not be one – choose a sen-

sible method for handling this).
(These are both vectorizable.) Plot histograms of both of these in
separate subplots (normalized to represent a p.m.f/p.d.f – see the
documentation for histogram) and overlay the appropriate (ana-
lytical) distribution functions over them.

7

Note: you can either define the distributions yourself or use a built-
in function (poisspdf exppdf). Read the documentation carefully
if you do.

3. Denote the wait time to the first error as W. Suppose we want to
characterize this channel based on its time between errors. But,
since we’re engineers and a bit lazy, we realize that excessive op-
timization yields diminishing returns – thus, we assign the quality
metric Q =

√
W. So: how high-quality is it?

Recalling from probability that, for random variables W,Q such
that W has p.d.f. f(w) and Q = u(W), u−1 = v, we have

g(q) = f(v(q))v′(q), v′(q) ⩾ 0,

find the analytical p.d.f. (using symbolics!) of Q, along with its
analytical mean and variance.

4. You know what’s next, right? Based on the wait times obtained ear-
lier, numerically compute the mean and variance of the channel
quality. Do these match the analytical results?

Bonus Suppose we take severalmeasurements (a random sample) ofQ and
average them in an effort to get a better estimate Q. How will Q
be distributed? Give a plot (or some other justification besides a
comment).

8

4 A Game?

One Last Thing (+0.5) I came across something for ph429 that I really want
to share with more than just the three others in that class. We were dis-
cussing variations on Conway’s Game of Life, and I found Lenia, which
extended cellular automatons to much more than I thought possible. So
we’re going to implement the Game of Life as the Lenia project did it:
using convolution!
If you’ve never seen it before (or as a reminder if you have), the Game of
Life is played on a grid of square cells. Each cell is either alive or dead.
Each cell has eight neighbors (intuitively defined). The rules of the Game
are as follows:

a. Any living cell with one neighbor or fewer dies of loneliness.
b. Any living cell with four neighbors or more dies of overcrowding.
c. Any living cell with two or three neighbors lives on to the next gen-

eration.
d. Any dead cell with exactly three neighbors comes back to life!

Let’s see if we can make this happen.

1. We’re going to have matlab’s conv2 do the work of adding up the
neighbors. Define a kernel K to be the matrix

K =

1 1 1
1 0 1
1 1 1


Note that convolving this with a 2d grid of zeroes and oneswill leave
each element with a count of how many of its eight neighbors are
alive. Test this by creating a random 9 × 9 array of zeroes or ones
G and calling conv2(G, K, 'same').

2. Create a growth function: a function that takes in the matrix of
counts obtained above and decides whether each cell should grow
(here, come to life) or shrink (here, die). For us, the function should
take an inputmatrixU of counts and return the following values for
each element:

growth(U) =


1, where uij = 3 exactly
−1, where uij < 2 or uij > 3
0, else

9

https://chakazul.github.io/lenia.html

This can be done very efficiently with a few vectorized conditionals.
3. Create a function called clip that takes three arguments, x, x_min,

& x_max, and ensures that all elements in x are between the mini-
mum and maximum values. For example,
clip([-1 3 9; 0 1 -3], 0, 1) == [0 1 1; 0 1 0];

4. Put it all together. Create a function called update that takes in
the current game state G, convolves G with K to get the neighbor
counts U, adds growth(U) to G, clip s the result between 0 and 1,
and returns it as the new game state.

5. Finally, let’s watch it play! Create a random board G to start with,
of a size you decide works well and use board = imshow(G); to
show the board, capturing the graphics handle in board.
In a loop (yes, really), update G using update, and display the new
board by assigning to board.CData and calling drawnow to redraw
it. Also, to slow things down, call pause .2 after displaying the
new board.

Bonus Extend the game of life to Primordia:
(a) the board should start with random integers between 0 and 9;
(b) the growth function should now return 1 for uij between 20

and 24, -1 for uij strictly less than 19 or more than 31, and 0
otherwise;

(c) state values should be clipped between 0 and 12, inclusive; and
(d) the board should receive normalized graphics data (0 to 1) so

that it shows a color gradient properly.
That’s it. See what happens!

Bonus Well…I do love creativity.

10

A On Gram-Schmidt Orthogonalization

Since I received a few requests specifically for this last year, I’ll briefly go over
the Gram-Schmidt process. Hopefully this helps clarify a few points for you all.

A.1 Inner Products

Any linear algebra text will give you the definition of an inner product on a
vector space. All we need is the notion that an inner product between two vec-
tors (read: signals!) tells us how much those vectors “align” with each other.
For real-valued vectors inRn, the standard inner product is the well-known dot
product.

For discrete-time signal vectors, the usual inner product is

⟨x, y⟩ =
∞∑

n=−∞

x[n] ȳ[n],

·̄ denoting complex conjugate. In matlab, we never deal with anything else, so
I won’t discuss the usual continuous-time inner product

⟨x, y⟩ =
∫ ∞

−∞
x(t) ȳ(t) dt.

Two vectors are orthogonal if the inner product between them is zero – that
is, they do not align (or anti-align) at all.

A.2 Norms

Once you have an inner product, the usual L2-norm is

∥x∥ =
√

⟨x, x⟩.

This is, notably, always real, always nonnegative, and always well-defined.
Given a vector x, one can normalize it to a unit vector ux which points in

the same direction by dividing x by its norm:

ux =
1
∥x∥

x.

Then ux has norm 1, which may be verified using the above expressions. Not
that you care to verify it. Trust me, ∥u∥x = 1.

11

A.3 Bases

A basis for a vector space is a set of linearly independent vectors which span
the space. I characterize this as “the smallest set of vectors out of which you can
construct the entire space.” For example, the entire R2 plane requires just two
vectors to construct – given a unit vector in the x direction and a unit vector in
the y direction, for example, any other vector in the plane is representable as a
linear combination of those two:

(5, 6.3) = 5(1, 0) + 6.3(0, 1).

Abasis is orthogonal if the vectors in that basis are orthogonal to each other,
and orthonormal if those vectors additionally have norm 1. The basis above is
orthonormal.

I should note again at this point that I’m deliberately not being formal. Don’t
press any of this too hard.

A.4 Projection

Projection (read: orthogonal projection) deals with finding out how much of
one vector points in the direction of another vector:

a b

â

To project a onto b to get â, take the inner product of a with b, then use that to
scale a unit vector ub in the direction of b appropriately:

â =

(
⟨a, b⟩
∥b∥

)(
1

∥b∥
b
)

=
⟨a, b⟩
∥b∥2

b.

Essentially, this finds out how much of a points in the direction of b, then scales
ub to that length.

Note that the dashed line in the above is equal to a − â, and is orthogonal
to â! This is Fred’s famous Orthogonality Principle™at work – if we project a
vector onto a space, what remains is orthogonal to that space.

12

A.5 The Gram-Schmidt Algorithm

This algorithm allows one to take a motley collection of vectors and create an
orthogonal basis from them. The idea is to repeatedly do the above: given a
(linearly independent) set of vectors {v1, v2, . . . , vn}, take one at a time, project
it onto the space of previous vectors, and subtract that projection. Thiswill yield
a set of vectors which are orthogonal to each other and span the same space as
the original set. Those basis vectors {w1,w2, . . . ,wn} are defined as follows:

w1 = v1,

w2 = v2 −
⟨v2,w1⟩
∥w1∥2

w1,

w3 = v3 −
⟨v3,w1⟩
∥w1∥2

w1 −
⟨v3,w2⟩
∥w2∥2

w2,

and so on. In general,

wk = vk −
k−1∑
m=1

⟨vk,wm⟩
∥wm∥2

wm.

Normalizing eachwk will yield an orthonormal basis {uw1 , uw2 , . . . , uwk}, which
is the goal!

A.6 This Stuff in MATLAB

I can’t give everything away, but the following should be enough to get you
started:

1 a = [0 2 7j 8];
2 b = [9 1 -4 -6j];
3 c = [6j 0 2 -1];
4
5 % take the inner product of a and b
6 % note: <a, b> = dot(b, a), because for some INSANE reason MATLAB conjugates
7 % the first argument instead of the second.
8 inner_ab = dot(b, a);
9 inner_ab = sum(a.*conj(b)); % mostly equivalent but slower
10

13

11 % normalize b
12 u_b = b/norm(b);
13 u_b = b/sqrt(dot(b, b)); % mostly equivalent but less explicit
14
15 % project a onto b
16 a_hat = dot(b, a)/dot(b, b)*b;
17 a_hat = dot(u_b, a)*u_b; % unit vectors are great, right?
18
19 % find the component of a orthogonal to b
20 a_orth = a - a_hat;
21
22 % project c onto {u_b, u_a_orth}
23 u_a_orth = a_orth/norm(a_orth);
24 c_hat = dot(u_b, c)*u_b + dot(u_a_orth, c)*u_a_orth;
25
26 % and so on...

14

hi! you made it to the last page.
there’s nothing of note here. just wanted to

say: thanks for sticking with it. if you’ve made it
this far, you’ve read through altogether toomuch
of my writing, ostensibly in the interest of learn-
ing something useful. i appreciate that. really.
sticking with cooper long enough to get out the
other side has taken a bit of a toll, honestly – see-
ing others willing to do that, to fight their way
through andfind something of value in it, is heart-
ening.

good luck with the rest of your tenure here –
i’ll be long gone. wave if we meet again, though.

– cat :3

15

	Linear Algebra
	Symbolic Manipulation
	Probability
	A Game?
	On Gram-Schmidt Orthogonalization
	Inner Products
	Norms
	Bases
	Projection
	The Gram-Schmidt Algorithm
	This Stuff in Matlab

