octave:2> octave:2> octave:2> octave:16> y2 = x.^2;^[[201~octave:16> octave:16> octave:16> octave:16> octave:16> x = -10:0.1:10; y = x.^3; y2 = x.^2; octave:19> size(y) ans = 1 201 octave:20> size(x) ans = 1 201 octave:21> plot(x, y) octave:22> plot(x, y2) octave:23> hold on octave:24> plot(x, y) octave:25> figure octave:26> plot(x, y) octave:27> close all octave:28> figure octave:29> plot(x, y) octave:30> xlabel('x axis') octave:31> ylabel('y axis') octave:32> ylabel('y axis! yay!') octave:33> ylabel('y axis! yay! more letters') octave:34> title('a plot of a cubic') octave:35> grid on octave:36> legend('x^3') octave:37> hold on octave:38> close all octave:39> ^[[201~octave:39> octave:39> octave:39> octave:39> octave:39> hold on; % plotting more than 1 plot on 1 figure rather than overwriting plot(x, y, 'DisplayName', 'x^3'); plot(x, y2, 'DisplayName', 'x^2'); hold off; xlabel 'x axis'; ylabel 'y axis'; title 'Example 1'; xlim([-10 10]); ylim([-10 10]); % axis([-10 10 -10 10]); grid on; legend show; % 'DisplayName does thisi octave:50> close all octave:51> help axis 'axis' is a function from the file /usr/share/octave/7.3.0/m/plot/appearance/axis.m -- axis () -- axis ([X_LO X_HI]) -- axis ([X_LO X_HI Y_LO Y_HI]) -- axis ([X_LO X_HI Y_LO Y_HI Z_LO Z_HI]) -- axis ([X_LO X_HI Y_LO Y_HI Z_LO Z_HI C_LO C_HI]) -- axis (OPTION) -- axis (OPTION1, OPTION2, ...) -- axis (HAX, ...) -- LIMITS = axis () Set axis limits and appearance. The argument LIMITS should be a 2-, 4-, 6-, or 8-element vector. The first and second elements specify the lower and upper limits for the x-axis. The third and fourth specify the limits for the y-axis, the fifth and sixth specify the limits for the z-axis, and the seventh and eighth specify the limits for the color axis. The special values '-Inf' and 'Inf' may be used to indicate that the limit should be automatically computed based on the data in the axes. Without any arguments, 'axis' turns autoscaling on. With one output argument, 'LIMITS = axis' returns the current axis limits. The vector argument specifying limits is optional, and additional string arguments may be used to specify various axis properties. The following options control the aspect ratio of the axes. "equal" Force x-axis unit distance to equal y-axis (and z-axis) unit distance. "square" Force a square axis aspect ratio. "vis3d" Set aspect ratio modes ("DataAspectRatio", "PlotBoxAspectRatio") to "manual" for rotation without stretching. "normal" "fill" Restore default automatically computed aspect ratios. The following options control the way axis limits are interpreted. "auto" "auto[xyz]" "auto [xyz]" Set nice auto-computed limits around the data for all axes, or only the specified axes. "manual" Fix the current axes limits. "tight" Fix axes to the limits of the data. "image" Equivalent to "tight" and "equal". The following options affect the appearance of tick marks. "tic" "tic[xyz]" "tic [xyz]" Turn tick marks on for all axes, or turn them on for the specified axes and off for the remainder. "label" "label[xyz]" "label [xyz]" Turn tick labels on for all axes, or turn them on for the specified axes and off for the remainder. "nolabel" Turn tick labels off for all axes. Note: If there are no tick marks for an axes then there can be no labels. The following options affect the direction of increasing values on the axes. "xy" Default y-axis, larger values are near the top. "ij" Reverse y-axis, smaller values are near the top. The following options affects the visibility of the axes. "on" Make the axes visible. "off" Hide the axes. If the first argument HAX is an axes handle, then operate on this axes rather than the current axes returned by 'gca'. Example 1: set X/Y limits and force a square aspect ratio axis ([1, 2, 3, 4], "square"); Example 2: enable tick marks on all axes, enable tick mark labels only on the y-axis axis ("tic", "labely"); See also: xlim, ylim, zlim, caxis, daspect, pbaspect, box, grid. Additional help for built-in functions and operators is available in the online version of the manual. Use the command 'doc ' to search the manual index. Help and information about Octave is also available on the WWW at https://www.octave.org and via the help@octave.org mailing list. octave:52> d2 = cos(t);^[[201~octave:52> octave:52> octave:52> octave:52> octave:52> t = 0:.1:10; d1 = sin(t); d2 = cos(t); octave:55> figure octave:56> ^[[200~hold on; plot(t, d1); plot(t, d2); hold off;^[[201~octave:56> octave:56> octave:56> octave:56> octave:56> hold on; plot(t, d1); plot(t, d2); hold off; octave:60> ^[[200~title 'Trig Functions';^[[201~octave:60> octave:60> octave:60> octave:60> octave:60> title 'Trig Functions'; octave:61> ^[[200~xlabel 'time (\mu)s';^[[201~octave:61> octave:61> octave:61> octave:61> octave:61> xlabel('time (\mu)s'); octave:62> ylabel('voltage') octave:63> legend('sin', 'cos') octave:64> close all octave:65> figure octave:66> octave:66> octave:66> octave:66> octave:66> octave:66> plot(t, d1, 'b-.', t, d2, 'rp'); octave:67> ^[[200~title 'Trig Functions'; xlabel 'time ($\mu$s)' Interpreter latex ylabel voltage; legend('sin', 'cos'); xticks(0:pi/2:10); xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});^[[201~octave:6 7> octave:67> octave:67> octave:67> octave:67> title 'Trig Functions'; xlabel 'time ($\mu$s)' Interpreter latex ylabel voltage; legend('sin', 'cos'); xticks(0:pi/2:10); xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'}); sh: 1: dvipng: not found warning: latex_renderer: a run-time test failed and the 'latex' interpreter has been d isabled. warning: called from __axis_label__ at line 36 column 6 xlabel at line 59 column 8 octave:73> title 'Trig Functions'; xlabel 'time ($\mu$s)' Interpreter latex ylabel voltage; legend('sin', 'cos'); xticks(0:pi/2:10); xticklabels({'0', '\pi/2', '\pi', '3\pi/2', octave:73> ^[[200~xticks(0:pi/2:10);^[[201~octave:73> octave:73> octave:73> octave:73> octave:73> xticks(0:pi/2:10); octave:74> ^[[200~xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});^[[201~o ctave:74> octave:74> octave:74> octave:74> octave:74> xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'}); octave:75> close all octave:76> figure octave:77> subplot(2, 1, 1) octave:78> ^[[200~octave:75> close all^[[201~octave:78> octave:78> octave:78> octave:78> octave:78> octave:75> close all octave:78> figure octave:79> subplot(2, 1, 1) octave:80> plot(t, d1) octave:81> hold on octave:82> plot(t, d2) octave:83> title('an ordinary plot') octave:84> subplot(2, 1, 2) octave:85> octave:85> octave:85> octave:85> octave:85> octave:85> plot(t, d1, 'b-.', t, d2, 'rp'); title 'Customized plot'; octave:87> close all octave:88> figure octave:89> stem(t, d1) octave:90> hold on octave:91> scatter(t, d2) octave:92> close all octave:93> ^[[200~t = linspace(0,10*pi);^[[201~octave:93> octave:93> octave:93> octave:93> octave:93> t = linspace(0,10*pi); octave:94> figure octave:95> plot3(sin(t), cos(t), t) octave:96> zlabel('t') octave:97> zlabel('tttttttttttttttttttttttttttttttttttt') octave:98> title('a helix! in space!') octave:99> text(0, 0, 0, 'origin') octave:100> close all octave:101> ^[[200~a1 = -2:0.25:2; b1 = a1; [A1, B1] = meshgrid(a1); F = A1.*exp(-A1.^2-B1.^2);^[[201~octave:101> octave:101> octave:101> octave:101> octave:101> a1 = -2:0.25:2; b1 = a1; [A1, B1] = meshgrid(a1); F = A1.*exp(-A1.^2-B1.^2); octave:105> A1 A1 = Columns 1 through 9: -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 -2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0 Columns 10 through 17: 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 octave:106> B1 B1 = Columns 1 through 9: -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 0 0 0 0 0 0 0 0 0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 Columns 10 through 17: -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 0 0 0 0 0 0 0 0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 octave:107> F F = Columns 1 through 9: -0.0007 -0.0015 -0.0029 -0.0048 -0.0067 -0.0078 -0.0071 -0.0043 0 -0.0017 -0.0038 -0.0074 -0.0123 -0.0172 -0.0200 -0.0182 -0.0110 0 -0.0039 -0.0086 -0.0167 -0.0276 -0.0388 -0.0450 -0.0410 -0.0248 0 -0.0077 -0.0172 -0.0331 -0.0549 -0.0771 -0.0896 -0.0816 -0.0492 0 -0.0135 -0.0301 -0.0582 -0.0964 -0.1353 -0.1572 -0.1433 -0.0864 0 -0.0209 -0.0466 -0.0901 -0.1493 -0.2096 -0.2435 -0.2219 -0.1338 0 -0.0285 -0.0637 -0.1231 -0.2041 -0.2865 -0.3328 -0.3033 -0.1829 0 -0.0344 -0.0769 -0.1485 -0.2461 -0.3456 -0.4014 -0.3658 -0.2206 0 -0.0366 -0.0818 -0.1581 -0.2620 -0.3679 -0.4273 -0.3894 -0.2349 0 -0.0344 -0.0769 -0.1485 -0.2461 -0.3456 -0.4014 -0.3658 -0.2206 0 -0.0285 -0.0637 -0.1231 -0.2041 -0.2865 -0.3328 -0.3033 -0.1829 0 -0.0209 -0.0466 -0.0901 -0.1493 -0.2096 -0.2435 -0.2219 -0.1338 0 -0.0135 -0.0301 -0.0582 -0.0964 -0.1353 -0.1572 -0.1433 -0.0864 0 -0.0077 -0.0172 -0.0331 -0.0549 -0.0771 -0.0896 -0.0816 -0.0492 0 -0.0039 -0.0086 -0.0167 -0.0276 -0.0388 -0.0450 -0.0410 -0.0248 0 -0.0017 -0.0038 -0.0074 -0.0123 -0.0172 -0.0200 -0.0182 -0.0110 0 -0.0007 -0.0015 -0.0029 -0.0048 -0.0067 -0.0078 -0.0071 -0.0043 0 Columns 10 through 17: 0.0043 0.0071 0.0078 0.0067 0.0048 0.0029 0.0015 0.0007 0.0110 0.0182 0.0200 0.0172 0.0123 0.0074 0.0038 0.0017 0.0248 0.0410 0.0450 0.0388 0.0276 0.0167 0.0086 0.0039 0.0492 0.0816 0.0896 0.0771 0.0549 0.0331 0.0172 0.0077 0.0864 0.1433 0.1572 0.1353 0.0964 0.0582 0.0301 0.0135 0.1338 0.2219 0.2435 0.2096 0.1493 0.0901 0.0466 0.0209 0.1829 0.3033 0.3328 0.2865 0.2041 0.1231 0.0637 0.0285 0.2206 0.3658 0.4014 0.3456 0.2461 0.1485 0.0769 0.0344 0.2349 0.3894 0.4273 0.3679 0.2620 0.1581 0.0818 0.0366 0.2206 0.3658 0.4014 0.3456 0.2461 0.1485 0.0769 0.0344 0.1829 0.3033 0.3328 0.2865 0.2041 0.1231 0.0637 0.0285 0.1338 0.2219 0.2435 0.2096 0.1493 0.0901 0.0466 0.0209 0.0864 0.1433 0.1572 0.1353 0.0964 0.0582 0.0301 0.0135 0.0492 0.0816 0.0896 0.0771 0.0549 0.0331 0.0172 0.0077 0.0248 0.0410 0.0450 0.0388 0.0276 0.0167 0.0086 0.0039 0.0110 0.0182 0.0200 0.0172 0.0123 0.0074 0.0038 0.0017 0.0043 0.0071 0.0078 0.0067 0.0048 0.0029 0.0015 0.0007 octave:108> figure octave:109> surf(A1, B1, F) octave:110> figure octave:111> mesh(A1, B1, F) octave:112> close all octave:113> help quiver 'quiver' is a function from the file /usr/share/octave/7.3.0/m/plot/draw/quiver.m -- quiver (U, V) -- quiver (X, Y, U, V) -- quiver (..., S) -- quiver (..., STYLE) -- quiver (..., "filled") -- quiver (HAX, ...) -- H = quiver (...) Plot a 2-D vector field with arrows. Plot the (U, V) components of a vector field at the grid points defined by (X, Y). If the grid is uniform then X and Y can be specified as vectors and 'meshgrid' is used to create the 2-D grid. If X and Y are not given they are assumed to be '(1:M, 1:N)' where '[M, N] = size (U)'. The optional input S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing. A value of 1.0 will result in the longest vector exactly filling one grid square. A value of 0 disables all scaling. The default value is 0.9. The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command. If a marker is specified then the markers are drawn at the origin of the vectors (which are the grid points defined by X and Y). When a marker is specified, the arrowhead is not drawn. If the argument "filled" is given then the markers are filled. If the first argument HAX is an axes handle, then plot into this axes, rather than the current axes returned by 'gca'. The optional return value H is a graphics handle to a quiver object. A quiver object regroups the components of the quiver plot (body, arrow, and marker), and allows them to be changed together. Example: [x, y] = meshgrid (1:2:20); h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10)); set (h, "maxheadsize", 0.33); See also: quiver3, compass, feather, plot. Additional help for built-in functions and operators is available in the online version of the manual. Use the command 'doc ' to search the manual index. Help and information about Octave is also available on the WWW at https://www.octave.org and via the help@octave.org mailing list. octave:114> help quiver3 'quiver3' is a function from the file /usr/share/octave/7.3.0/m/plot/draw/quiver3.m -- quiver3 (X, Y, Z, U, V, W) -- quiver3 (Z, U, V, W) -- quiver3 (..., S) -- quiver3 (..., STYLE) -- quiver3 (..., "filled") -- quiver3 (HAX, ...) -- H = quiver3 (...) Plot a 3-D vector field with arrows. Plot the (U, V, W) components of a vector field at the grid points defined by (X, Y, Z). If the grid is uniform then X, Y, and Z can be specified as vectors and 'meshgrid' is used to create the 3-D grid. If X and Y are not given they are assumed to be '(1:M, 1:N)' where '[M, N] = size (U)'. The optional input S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing. A value of 1.0 will result in the longest vector exactly filling one grid cube. A value of 0 disables all scaling. The default value is 0.9. The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command. If a marker is specified then the markers are drawn at the origin of the vectors (which are the grid points defined by X, Y, Z). When a marker is specified, the arrowhead is not drawn. If the argument "filled" is given then the markers are filled. If the first argument HAX is an axes handle, then plot into this axes, rather than the current axes returned by 'gca'. The optional return value H is a graphics handle to a quiver object. A quiver object regroups the components of the quiver plot (body, arrow, and marker), and allows them to be changed together. [x, y, z] = peaks (25); surf (x, y, z); hold on; [u, v, w] = surfnorm (x, y, z / 10); h = quiver3 (x, y, z, u, v, w); set (h, "maxheadsize", 0.33); See also: quiver, compass, feather, plot. Additional help for built-in functions and operators is available in the online version of the manual. Use the command 'doc ' to search the manual index. Help and information about Octave is also available on the WWW at https://www.octave.org and via the help@octave.org mailing list. octave:115> help feather 'feather' is a function from the file /usr/share/octave/7.3.0/m/plot/draw/feather.m -- feather (U, V) -- feather (Z) -- feather (..., STYLE) -- feather (HAX, ...) -- H = feather (...) Plot the '(U, V)' components of a vector field emanating from equidistant points on the x-axis. If a single complex argument Z is given, then 'U = real (Z)' and 'V = imag (Z)'. The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command. If the first argument HAX is an axes handle, then plot into this axes, rather than the current axes returned by 'gca'. The optional return value H is a vector of graphics handles to the line objects representing the drawn vectors. phi = [0 : 15 : 360] * pi/180; feather (sin (phi), cos (phi)); See also: plot, quiver, compass. Additional help for built-in functions and operators is available in the online version of the manual. Use the command 'doc ' to search the manual index. Help and information about Octave is also available on the WWW at https://www.octave.org and via the help@octave.org mailing list. octave:116> figure octave:117> imshow([1 0; 0 1]) octave:118> imshow(1:255) octave:119> imshow([1 .5; .5 1]) octave:120> whos Variables visible from the current scope: variables in scope: top scope Attr Name Size Bytes Class octave:124> whos octave:125> x = [1 0; 0 1] x = 1 0 0 1 octave:126> whose error: 'whose' undefined near line 1, column 1 octave:127> whos Variables visible from the current scope: variables in scope: top scope Attr Name Size Bytes Class ==== ==== ==== ===== ===== x 2x2 32 double Total is 4 elements using 32 bytes octave:128> imshow(x) octave:129> imshow(int(x)) error: 'int' undefined near line 1, column 8 octave:130> int int16 int64 integral2 interp2 interpn intmin int2str int8 integral3 interp3 intersect int32 integral interp1 interpft intmax octave:130> imshow(int8(x)) error: imshow: invalid data type for image error: called from imshow at line 199 column 9 octave:131> close all octave:132> image = reshape(linspace(0, 1, 12), 2, 2, 3) image = ans(:,:,1) = 0 0.1818 0.0909 0.2727 ans(:,:,2) = 0.3636 0.5455 0.4545 0.6364 ans(:,:,3) = 0.7273 0.9091 0.8182 1.0000 octave:133> imshow(image) octave:134> image(:, :, 3) = 0 image = ans(:,:,1) = 0 0.1818 0.0909 0.2727 ans(:,:,2) = 0.3636 0.5455 0.4545 0.6364 ans(:,:,3) = 0 0 0 0 octave:135> imshow(image) octave:136> image(:, :, 2) = 0 image = ans(:,:,1) = 0 0.1818 0.0909 0.2727 ans(:,:,2) = 0 0 0 0 ans(:,:,3) = 0 0 0 0 octave:137> imshow(image) octave:138> close all octave:139>