
ECE-210-B HOMEWORK #5
ADVANCEDMANIPULATIONS

Cat Van West, Spring 2024

Contents

1 The Assignment 2

A Meshes& Broadcasting 4
A.1 The Grid . 4
A.2 How To Broadcast . 5

...broadcasting & indexing! There’s a reason we had a second lesson dedi-
cated to how vectors work in matlab– the techniques we’ve covered are power-
ful& efficient tools whenwielded appropriately. This assignment should (hope-
fully) convince you of this.

Note that several of these questions have line count targets. (I won’t take
off anything if you go over by a little bit – they’re just to ensure you’re in the
right ballpark.) These are generally set at the number of lines I used to solve
it, unless I did something really tricky. While “a line of code” is a pretty fuzzy
quantity, these should be doable in their stated line counts without sacrificing
style. Vectorize, vectorize, vectorize... ;)

1

1 The Assignment

This one is a bit longer than the last two – broadcasting and vectorization are
extremely important, and they merit a bit of meditation.
OnThe Air No reallocation, no loops, no help, no sanity… a typical day at the

Copper Onion. Solve the following with vectorized operations. Broad-
casting and meshgrid will be helpful here!
1. Create the matrix

R =


−9 + 9i −8 + 9i . . . 8 + 9i 9 + 9i
−9 + 8i −8 + 8i . . . 8 + 8i 9 + 8i

...
...

...
...

−9 − 8i −8 − 8i . . . 8 − 8i 9 − 8i
−9 − 9i −8 − 9i . . . 8 − 9i 9 − 9i


(effectively a matrix of coordinates) in the tidiest way you can. (2
lines, 1 if very clever)

2. Approximate ∫ 1

0
sin(tn) dt

for n = 1, 2, . . . , 50. Use trapz (the non-cumulative cousin of
cumtrapz) and at least 10000 sample points. Try creating a vector
of points and a vector of n values, combine them via broadcasting
or meshgrid, and go from there. (3 lines)

3. Let’s do something weird – like plot a sphere.
(a) Create two matrices, theta and phi, as follows:

[theta, phi] = meshgrid(...
linspace(0, 2*pi, 5), ...
linspace(0, pi, 5));

(This counts as a one-liner inmy book.) These will serve as our
spherical coordinates θ and ϕ.

(b) Find the x, y, and z coordinates they correspond to using the
spherical coordinate conversions

x = sin ϕ cos θ,
y = sin ϕ sin θ,
z = cos ϕ.

2

These should take the form of function calls and elementwise
multiplies.

(c) Plot these points using surf. Call pbaspect with appropriate
arguments to make the axes nice and square. Provide a proper
title. All the usual plotting stuff.

UnderThe Sea Perform the following operations with overly clever indexing.
All line counts include creation of data vectors/matrices.
1. Find the values insin(linspace(0, 5, 100).*linspace(-5, 0, 100).')

which are closest to 1/2 (there are a few ties for closest), along with
their 2d indices. (min, abs, and find may be useful!) (3 lines)

2. Approximate the volume contained above by the surface z = e−(1−xy)2

and below by the surface z = 1
4
√
x2 + y2. You’ll have to use logical

indexing to selectively sum up volume where one curve is actually
over the other. (Serious bonus points if you 3d-plot the enclosed
volume!) (3 lines, no plot)

I Need a Vacation And now, the weather! Create the following matrices, using
figure and imshow to visualize them. All these matrices are 256× 256,
and either contain floating-point values or logicals. Add a little comment
describing each one (themeaning of “describe” is up to you, beyond basic
technical information). Note: the notation aij means the element of A in
row i, column j – i.e., A(i_index, j_index).
1. A where aij is true iff

√
(i− 99)2 + (j− 99)2 < 29.

2. B where bij is true iff
√

(i− 62)2 + (j− 62)2 < 58.
3. C where cij is true iff i− 4 sin(j/10) > 200.
4. S = rand(256, 256, 3) with its two “lower” layers (3rd index 1

and 2) zeroed out.
5. M = A ∩ BC (C denoting logical complement – in other words, ~).
6. Z = (C · S) +M (· denoting elementwise multiply).

3

A Meshes& Broadcasting

The concepts of broadcasting & meshgrid are often tricky to understand, so
some illustrated examples are likely in order. I’ll start with meshgrid, because
it comes naturally out of evaluating functions using matrices of coordinates –
however, broadcasting (in my opinion) is a more versatile technique (and is
often faster in practice), so keep reading to the end!

A.1 The Grid

Suppose you want to find the area under the surface z = x + y over the unit
square (0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1) . In order to do this in matlab, we could do
a discrete Riemann sum: evaluate the function at points on a grid, transform
each of those points into a rectangular prism, and sum the areas of those prisms.
So… how do we create the grid of points? One way might be as follows:

x = [0 .2 .4 .6 .8 1; ...
0 .2 .4 .6 .8 1; ...
0 .2 .4 .6 .8 1; ...
0 .2 .4 .6 .8 1; ...
0 .2 .4 .6 .8 1; ...
0 .2 .4 .6 .8 1];

y = [0 0 0 0 0 0; ...
.2 .2 .2 .2 .2 .2; ...
.4 .4 .4 .4 .4 .4; ...
.6 .6 .6 .6 .6 .6; ...
.8 .8 .8 .8 .8 .8; ...
1 1 1 1 1 1]

z = x + y;

Note the pattern in x and yhere: each element of x contains its ownx-coordinate,
and each element of y contains its own y-coordinate (flipped vertically). We’re
treating these matrices as gridded data: each element of x and y contains infor-
mation about its corresponding point in the plane (namely, one of its coordi-
nates). Evaluating the expression for z elementwise thus inserts the correct x &
y coordinates at the correct positions in the matrix: the upper left corner has
x = 0 and y = 0, so z = 0; the lower right corner has x = 1 and y = 1, so z = 2
– in general, each of the coordinates winds up in the right place, and z becomes

4

z =

0 .2 .4 .6 .8 1.0
.2 .4 .6 .8 1.0 1.2
.4 .6 .8 1.0 1.2 1.4
.6 .8 1.0 1.2 1.4 1.6
.8 1.0 1.2 1.4 1.6 1.8

1.0 1.2 1.4 1.6 1.8 2.0

which is a grid of evaluations of z = x + y. This can be used for any function
(the notes show this technique used to evaluate z = exp(−x2−y2), which trans-
lates to matlab code as z = exp(-x.^2 - y.^2)), and, as such, is a handy
technique. So much so that it has a name: those x & ymatrices we created form
a mesh, two matrices that form a gridded set of coordinates, and such meshes
are typically generated not by hand (which is a pain) but by meshgrid. The
following code generates identical matrices to those handcrafted above:

[x, y] = meshgrid(0:.2:1); % same as before
z = x + y;

meshgrid takes in a vector (or two vectors, for non-square matrices) of coordi-
nates and createsmatriceswhich function as x, y coordinate inputs to vectorized
functions. Try it out and see what it does!

A.2 How To Broadcast

meshgrid is usually only usedwheremeshes are really necessary – places where
being able to traverse the space of evaluation in two or three dimensions is nec-
essary. Surface plots, like the sphere in this assignment, are one of those places:
each z-coordinate needs an easy association with an x and y coordinate so that
the plotting engine knows where the hell to put all the points.

If, however, we just want the results of the evaluation (or want another tech-
nique to construct matrices really quickly), broadcasting is an alternative. You
met broadcasting in the very first assignment when you performed C + A –
an operation notably not valid in mathematics, because C and A were different
shapes! They were, however, broadcastable shapes – Cwas a 4× 4 matrix and A
was a 4× 1 column vector, so matlab simply repeated A four times and added

5

it to C:

C+ A →


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

+


w
x
y
z



→


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

+



w
x
y
z



w
x
y
z



w
x
y
z



w
x
y
z




→


c11 + w c12 + w c13 + w c14 + w
c21 + x c22 + x c23 + x c24 + x
c31 + y c32 + y c33 + y c34 + y
c41 + z c42 + z c43 + z c44 + z

 .

Any two matrices with dimensions that can be made to match by this sort of
repetition are broadcastable, and any elementwise operation may cause broad-
casting to occur. For example, we could compute an elementary multiplication
table very quickly using .*:

first_factor = 0:9; % row vector, 1×10
second_factor = (0:9).'; % column vector (transposed), 10×1
mult_table = first_factor .* second_factor; % becomes 10×10

To perform this calculation, matlab recognizes that if first_factor is re-
peated 10 times vertically and second_factor is repeated 10 times horizon-
tally, both will be the same size, so it (effectively) does that, producing a 10×10
result.

These examples are, of course, simple, to facilitate understanding. There’s
more that can be done… but that’s up to you!

6

	The Assignment
	Meshes & Broadcasting
	The Grid
	How To Broadcast

