uploaded all materials
This commit is contained in:
commit
f2fb36f646
3
README.md
Normal file
3
README.md
Normal file
@ -0,0 +1,3 @@
|
||||
notes from matlab seminar
|
||||
|
||||
thanks to cat van west for all the knowledge :D
|
138
hw1/Ryan_hw1_012424.m
Normal file
138
hw1/Ryan_hw1_012424.m
Normal file
@ -0,0 +1,138 @@
|
||||
%%%% ECE210-B Matlab Seminar, Homework 1.
|
||||
% james ryan, 1/24/24
|
||||
|
||||
% preamble
|
||||
close all;
|
||||
clear;
|
||||
clc;
|
||||
|
||||
%% Scale-'ers
|
||||
% (1)
|
||||
% Takes the absolute value of
|
||||
% sin(pi/3)
|
||||
% PLUS
|
||||
% j divided by secant of (-5/3)*pi
|
||||
a = abs(sin(pi ./ 3) ...
|
||||
+ ((1 * j) ./ (sec((-5 * pi) / 3))) ...
|
||||
);
|
||||
|
||||
% (2)
|
||||
% n = 3, cubic root
|
||||
l = nthroot(8, 3);
|
||||
|
||||
% (3)
|
||||
% [1, 2, 3, ..., 79, 80]
|
||||
u_mat = 1:80;
|
||||
|
||||
% Sums all the terms from u_mat, scales by 2 / 6!, and takes the square root
|
||||
u = sqrt((2 / factorial(6)) * sum(u_mat));
|
||||
|
||||
% q4
|
||||
% takes the square
|
||||
% of imaginary value
|
||||
% of the floor
|
||||
% of the log
|
||||
% of the square root of 66
|
||||
% taken to the power of 7j
|
||||
m = (imag(floor(log(sqrt(66).^(7 * j))))).^2;
|
||||
|
||||
%% Mother...?
|
||||
% (1)
|
||||
% Makes a 1x4 matrix from a l u & m,
|
||||
% and transposes the formed matrix into a 4x1 matrix
|
||||
A = [a; l; u; m];
|
||||
|
||||
% (2)
|
||||
% makes a 2x2 matrix using a l u & m.
|
||||
F = [a l; u m];
|
||||
|
||||
% (3)
|
||||
% takes the non-conjugate transpose of F
|
||||
T = F.';
|
||||
|
||||
% (4)
|
||||
% takes the inverse of the matrix product of T * F
|
||||
B = inv(T * F);
|
||||
check = B * (T * F)
|
||||
|
||||
% (5)
|
||||
% Makes a square matrix comprised of T and F
|
||||
C = [T F; F T];
|
||||
|
||||
%% Cruelty
|
||||
meanB = mean(B, "all"); % sums "all" values in matrix B into one scalar
|
||||
% squashes every row down into the sum of all elements
|
||||
% in a given row
|
||||
|
||||
meanC = mean(C, 2); % ... or takes the mean of every value along a
|
||||
% dimension (the 2nd dimension), and squashes
|
||||
% the matrix down into one dimension.
|
||||
|
||||
%% Odd Types
|
||||
% eval one
|
||||
evalOne = T + F;
|
||||
%{
|
||||
comments:
|
||||
evalOne =
|
||||
|
||||
2 5
|
||||
5 8
|
||||
|
||||
This makes sense, considering T was [1 3; 2 4] and F was [1 2; 3 4]
|
||||
It seems like, at the same index on both matrices, the value occupying
|
||||
that spot was taken from both and summed.
|
||||
|
||||
%}
|
||||
|
||||
% eval 2
|
||||
evalTwo = T + 1;
|
||||
%{
|
||||
comments:
|
||||
evalTwo =
|
||||
|
||||
2 4
|
||||
3 5
|
||||
|
||||
This makes sense, since it seems like 1 was interpreted as a 2x2 matrix
|
||||
occupied only by 1's. The same summing algorithm was applied, and every
|
||||
value occupying T was incremented by 1.
|
||||
|
||||
This could be confusing if we were multiplying instead of dividing,
|
||||
since it would make more intuitive sense to be referring to the
|
||||
identity matrix as 1, rather than a matrix filled wuth 1's.
|
||||
|
||||
%}
|
||||
|
||||
% eval kicks
|
||||
evalKicks = A + C;
|
||||
%{
|
||||
comments:
|
||||
evalKicks =
|
||||
|
||||
2 5 4 6
|
||||
3 6 6 8
|
||||
2 4 4 7
|
||||
4 6 5 8
|
||||
|
||||
A and C are not the same dimensions. A is 1x4 while C is 4x4.
|
||||
It seems that C was sliced by rows in order to let this
|
||||
operation make sense.
|
||||
so for every Row in C, the value corresponding
|
||||
to the matching column in A was added to that value in C.
|
||||
Put nicely: Every row in C (a 1x4 matrix) was summed with A,
|
||||
and then returned to the row index it previously occupied in C proper.
|
||||
|
||||
%}
|
||||
|
||||
|
||||
%% Not What it Seems...
|
||||
for k = [3 5 10 300 1e6]
|
||||
% sets up a 1xk matrix of `k` evenly spaced vals that are [0, 1]
|
||||
genericMatrix = linspace(0, 1, k);
|
||||
|
||||
% squares every val in the matrix, sums all squared vals together, and divs
|
||||
% every element by k.
|
||||
% Essentially -- average value of x^2 from 0 to 1
|
||||
% Also known as power, according to fred
|
||||
genericScalar = sum(genericMatrix.^2) ./ k;
|
||||
end
|
150
hw1/feedback/Ryan_hw1_012424.m
Normal file
150
hw1/feedback/Ryan_hw1_012424.m
Normal file
@ -0,0 +1,150 @@
|
||||
%%%% ECE210-B Matlab Seminar, Homework 1.
|
||||
% james ryan, 1/24/24
|
||||
|
||||
% <-.0> style point: please ensure files are named so that
|
||||
% MATLAB (sorry, i'd rather grade in Octave, but this is not
|
||||
% Octave seminar...) can run them! this one had a space in it.
|
||||
|
||||
% preamble
|
||||
close all;
|
||||
clear;
|
||||
clc;
|
||||
|
||||
%% Scale-'ers
|
||||
% (1)
|
||||
% Takes the absolute value of
|
||||
% sin(pi/3)
|
||||
% PLUS
|
||||
% j divided by secant of (-5/3)*pi
|
||||
a = abs(sin(pi ./ 3) ...
|
||||
+ ((1 * j) ./ (sec((-5 * pi) / 3))) ...
|
||||
);
|
||||
% MATLAB interptes complex literals, so you could also write
|
||||
% `1j`.
|
||||
|
||||
% (2)
|
||||
% n = 3, cubic root
|
||||
l = nthroot(8, 3);
|
||||
% could also do `8^(1/3)`, if you're mathematically inclined.
|
||||
|
||||
% (3)
|
||||
% [1, 2, 3, ..., 79, 80]
|
||||
u_mat = 1:80;
|
||||
|
||||
% Sums all the terms from u_mat, scales by 2 / 6!, and takes the square root
|
||||
u = sqrt((2 / factorial(6)) * sum(u_mat));
|
||||
|
||||
% q4
|
||||
% takes the square
|
||||
% of imaginary value
|
||||
% of the floor
|
||||
% of the log
|
||||
% of the square root of 66
|
||||
% taken to the power of 7j
|
||||
m = (imag(floor(log(sqrt(66).^(7 * j))))).^2;
|
||||
% since these are scalars, the `.^` is not strictly necessary,
|
||||
% but i see you have a vector bent...
|
||||
|
||||
%% Mother...?
|
||||
% (1)
|
||||
% Makes a 1x4 matrix from a l u & m,
|
||||
% and transposes the formed matrix into a 4x1 matrix
|
||||
A = [a; l; u; m];
|
||||
|
||||
% (2)
|
||||
% makes a 2x2 matrix using a l u & m.
|
||||
F = [a l; u m];
|
||||
|
||||
% (3)
|
||||
% takes the non-conjugate transpose of F
|
||||
T = F.';
|
||||
|
||||
% (4)
|
||||
% takes the inverse of the matrix product of T * F
|
||||
B = inv(T * F);
|
||||
check = B * (T * F)
|
||||
% aaaaaaa no semicolon
|
||||
|
||||
% (5)
|
||||
% Makes a square matrix comprised of T and F
|
||||
C = [T F; F T];
|
||||
|
||||
%% Cruelty
|
||||
meanB = mean(B, "all"); % sums "all" values in matrix B into one scalar
|
||||
% squashes every row down into the sum of all elements
|
||||
% in a given row
|
||||
|
||||
meanC = mean(C, 2); % ... or takes the mean of every value along a
|
||||
% dimension (the 2nd dimension), and squashes
|
||||
% the matrix down into one dimension.
|
||||
|
||||
%% Odd Types
|
||||
% eval one
|
||||
evalOne = T + F;
|
||||
%{
|
||||
comments:
|
||||
evalOne =
|
||||
|
||||
2 5
|
||||
5 8
|
||||
|
||||
This makes sense, considering T was [1 3; 2 4] and F was [1 2; 3 4]
|
||||
It seems like, at the same index on both matrices, the value occupying
|
||||
that spot was taken from both and summed.
|
||||
|
||||
%}
|
||||
|
||||
% eval 2
|
||||
evalTwo = T + 1;
|
||||
%{
|
||||
comments:
|
||||
evalTwo =
|
||||
|
||||
2 4
|
||||
3 5
|
||||
|
||||
This makes sense, since it seems like 1 was interpreted as a 2x2 matrix
|
||||
occupied only by 1's. The same summing algorithm was applied, and every
|
||||
value occupying T was incremented by 1.
|
||||
|
||||
This could be confusing if we were multiplying instead of dividing,
|
||||
since it would make more intuitive sense to be referring to the
|
||||
identity matrix as 1, rather than a matrix filled wuth 1's.
|
||||
|
||||
%}
|
||||
|
||||
% eval kicks
|
||||
evalKicks = A + C;
|
||||
%{
|
||||
comments:
|
||||
evalKicks =
|
||||
|
||||
2 5 4 6
|
||||
3 6 6 8
|
||||
2 4 4 7
|
||||
4 6 5 8
|
||||
|
||||
A and C are not the same dimensions. A is 1x4 while C is 4x4.
|
||||
It seems that C was sliced by rows in order to let this
|
||||
operation make sense.
|
||||
so for every Row in C, the value corresponding
|
||||
to the matching column in A was added to that value in C.
|
||||
Put nicely: Every row in C (a 1x4 matrix) was summed with A,
|
||||
and then returned to the row index it previously occupied in C proper.
|
||||
|
||||
%}
|
||||
% <+.06> love the extensive commentary.
|
||||
|
||||
|
||||
%% Not What it Seems...
|
||||
for k = [3 5 10 300 1e6]
|
||||
% sets up a 1xk matrix of `k` evenly spaced vals that are [0, 1]
|
||||
genericMatrix = linspace(0, 1, k);
|
||||
|
||||
% squares every val in the matrix, sums all squared vals together, and divs
|
||||
% every element by k.
|
||||
% Essentially -- average value of x^2 from 0 to 1
|
||||
% Also known as power, according to fred
|
||||
genericScalar = sum(genericMatrix.^2) ./ k;
|
||||
end
|
||||
% right, and what *is* that average, in terms of math objects?
|
105
hw2/Ryan_hw2_013124.m
Normal file
105
hw2/Ryan_hw2_013124.m
Normal file
@ -0,0 +1,105 @@
|
||||
%%%% ECE210-B Matlab Seminar, Homework 2.
|
||||
% james kit paul thomas ryan murphy, 1/31/24
|
||||
% this is james' full name. -A.
|
||||
|
||||
% this should run in octave (7.3.0)!
|
||||
close all; clear; clc;
|
||||
|
||||
%% Spatial Awareness
|
||||
% (1)
|
||||
A = reshape(0:63, 8, 8).';
|
||||
B = 2 .^ A;
|
||||
|
||||
% (2)
|
||||
B_colvec = reshape(B, [], 1);
|
||||
|
||||
% primes(64) = [2, 3, 5... 61]
|
||||
% since we're asking for the prime indices from index 1 to index 64,
|
||||
% getting all prime numbers within [0, 64] seems fitting
|
||||
B_primeinds = B_colvec(primes(length(B_colvec)));
|
||||
|
||||
% (3)
|
||||
B_primeinds_geometric_mean = prod(B_primeinds) .^ (1 / length(B_primeinds));
|
||||
|
||||
% (4)
|
||||
% (1, :) -- Grab ALL of row 1 (aka the top row) in the matrix.
|
||||
% fliplr -- flip left to right
|
||||
A(1, :) = fliplr(A(1, :)); % :)
|
||||
|
||||
% (5)
|
||||
% Keep all rows, keep all cols minus the end col
|
||||
A_lastcol_del = A(1:8, 1:end-1);
|
||||
|
||||
|
||||
%% Smallest Addition
|
||||
% (1)
|
||||
N = 100;
|
||||
t = linspace(0, 6.66, N);
|
||||
|
||||
erf_integrand = exp(-t .^ 2);
|
||||
|
||||
figure;
|
||||
title("Plot of e^{-t^2}, (100pts, [0, 6.66])");
|
||||
xlabel("time");
|
||||
ylabel("e^{-t^2}");
|
||||
plot(t, erf_integrand);
|
||||
|
||||
% (2)
|
||||
% derivative approximation,
|
||||
% form some dt being the distance between points on our time axis
|
||||
% form the derivative by dividing the formed erf_integrand over dt
|
||||
dt = t(2) - t(1);
|
||||
dfdt = diff(erf_integrand) ./ dt;
|
||||
|
||||
% padding op
|
||||
dfdt = dfdt([1 1:end]);
|
||||
|
||||
% mean squared error between approximate taken and real erf deriv
|
||||
dfdt_anal = -2 .* t .* exp( -t .^ 2);
|
||||
msqerr_dfdt = (1 / N) .* mean((dfdt - dfdt_anal) .^ 2);
|
||||
|
||||
figure; hold on;
|
||||
title('d/dt[e^{-t^2}] -- analytic vs approximate (100pts, [0, 6.66])');
|
||||
xlabel('time');
|
||||
ylabel('d/dt[-exp(t^2)]');
|
||||
|
||||
plot(t, dfdt, 'g-');
|
||||
plot(t, dfdt_anal, 'r-');
|
||||
|
||||
% (3)
|
||||
|
||||
% integral approx
|
||||
% take the area under the curve between t(n) and t(n-1)
|
||||
% sum the area and scale by 2/sqrt(pi)
|
||||
|
||||
figure; hold on;
|
||||
title('erf -- analytic vs approximate (100pts, [0, 6.66])');
|
||||
xlabel('time');
|
||||
ylabel('erf(t)');
|
||||
|
||||
% baseline
|
||||
erf_anal = (sqrt(pi) ./ 2) .* erf(t);
|
||||
|
||||
% cum sum
|
||||
erf_approx_cumsum = cumsum(erf_integrand) .* dt;
|
||||
msqerr_erf_cumsum = (1 / N) .* mean((erf_approx_cumsum - erf_anal) .^ 2);
|
||||
|
||||
% cum trapz
|
||||
erf_approx_cumtrapz = cumtrapz(erf_integrand) .* dt;
|
||||
msqerr_erf_cumtrapz = (1 / N) .* mean((erf_approx_cumtrapz - erf_anal) .^ 2);
|
||||
|
||||
%{
|
||||
The mean-square error of the cumsum op is 5 orders of magnitude larger
|
||||
than the result from the cumtrapz op.
|
||||
Qualitatively, the cumsum approximation (blue line) is noticably further
|
||||
away than the cumtrapz approximation (red line). the cumsum also has
|
||||
a non-negligible y intercept, which is much further than the cumtrapz
|
||||
assumption. However, the cumtrapz is basically on top of the analytic
|
||||
function (green line), which is especially novel considering both ops
|
||||
used the same data set.
|
||||
%}
|
||||
|
||||
% check
|
||||
plot(t, erf_approx_cumsum, "b-");
|
||||
plot(t, erf_approx_cumtrapz, "r-");
|
||||
plot(t, erf_anal, "g-");
|
117
hw2/feedback/Ryan_hw2_013124.m
Normal file
117
hw2/feedback/Ryan_hw2_013124.m
Normal file
@ -0,0 +1,117 @@
|
||||
%%%% ECE210-B Matlab Seminar, Homework 2.
|
||||
% james kit paul thomas ryan murphy, 1/31/24
|
||||
% this is james' full name. -A.
|
||||
% <+.01> i needed this.
|
||||
|
||||
% this should run in octave (7.3.0)!
|
||||
% <3, turns out it also runs in MATLAB. love the comment,
|
||||
% though.
|
||||
close all; clear; clc;
|
||||
|
||||
%% Spatial Awareness
|
||||
% (1)
|
||||
A = reshape(0:63, 8, 8).';
|
||||
B = 2 .^ A;
|
||||
|
||||
% (2)
|
||||
B_colvec = reshape(B, [], 1);
|
||||
|
||||
% primes(64) = [2, 3, 5... 61]
|
||||
% since we're asking for the prime indices from index 1 to index 64,
|
||||
% getting all prime numbers within [0, 64] seems fitting
|
||||
B_primeinds = B_colvec(primes(length(B_colvec)));
|
||||
% very clean, like it.
|
||||
|
||||
% (3)
|
||||
B_primeinds_geometric_mean = prod(B_primeinds) .^ (1 / length(B_primeinds));
|
||||
|
||||
% (4)
|
||||
% (1, :) -- Grab ALL of row 1 (aka the top row) in the matrix.
|
||||
% fliplr -- flip left to right
|
||||
A(1, :) = fliplr(A(1, :)); % :)
|
||||
|
||||
% (5)
|
||||
% Keep all rows, keep all cols minus the end col
|
||||
A_lastcol_del = A(1:8, 1:end-1);
|
||||
% that's one way! another is to assign to A (or a copy) with an
|
||||
% empty matrix:
|
||||
% A(:, end) = [];
|
||||
|
||||
|
||||
%% Smallest Addition
|
||||
% (1)
|
||||
N = 100;
|
||||
t = linspace(0, 6.66, N);
|
||||
|
||||
erf_integrand = exp(-t .^ 2);
|
||||
|
||||
figure;
|
||||
title("Plot of e^{-t^2}, (100pts, [0, 6.66])");
|
||||
xlabel("time");
|
||||
ylabel("e^{-t^2}");
|
||||
plot(t, erf_integrand);
|
||||
|
||||
% (2)
|
||||
% derivative approximation,
|
||||
% form some dt being the distance between points on our time axis
|
||||
% form the derivative by dividing the formed erf_integrand over dt
|
||||
dt = t(2) - t(1);
|
||||
dfdt = diff(erf_integrand) ./ dt;
|
||||
|
||||
% padding op
|
||||
dfdt = dfdt([1 1:end]);
|
||||
|
||||
% mean squared error between approximate taken and real erf deriv
|
||||
dfdt_anal = -2 .* t .* exp( -t .^ 2);
|
||||
msqerr_dfdt = (1 / N) .* mean((dfdt - dfdt_anal) .^ 2);
|
||||
% <-.03> (repeated) this will underreport -- `mean()` already
|
||||
% does a divide by the length of the array, so another divide
|
||||
% by N is not necessary.
|
||||
|
||||
figure; hold on;
|
||||
title('d/dt[e^{-t^2}] -- analytic vs approximate (100pts, [0, 6.66])');
|
||||
xlabel('time');
|
||||
ylabel('d/dt[-exp(t^2)]');
|
||||
|
||||
plot(t, dfdt, 'g-');
|
||||
plot(t, dfdt_anal, 'r-');
|
||||
|
||||
% (3)
|
||||
|
||||
% integral approx
|
||||
% take the area under the curve between t(n) and t(n-1)
|
||||
% sum the area and scale by 2/sqrt(pi)
|
||||
|
||||
figure; hold on;
|
||||
title('erf -- analytic vs approximate (100pts, [0, 6.66])');
|
||||
xlabel('time');
|
||||
ylabel('erf(t)');
|
||||
|
||||
% baseline
|
||||
erf_anal = (sqrt(pi) ./ 2) .* erf(t);
|
||||
|
||||
% cum sum
|
||||
erf_approx_cumsum = cumsum(erf_integrand) .* dt;
|
||||
msqerr_erf_cumsum = (1 / N) .* mean((erf_approx_cumsum - erf_anal) .^ 2);
|
||||
|
||||
% cum trapz
|
||||
erf_approx_cumtrapz = cumtrapz(erf_integrand) .* dt;
|
||||
msqerr_erf_cumtrapz = (1 / N) .* mean((erf_approx_cumtrapz - erf_anal) .^ 2);
|
||||
|
||||
%{
|
||||
The mean-square error of the cumsum op is 5 orders of magnitude larger
|
||||
than the result from the cumtrapz op.
|
||||
Qualitatively, the cumsum approximation (blue line) is noticably further
|
||||
away than the cumtrapz approximation (red line). the cumsum also has
|
||||
a non-negligible y intercept, which is much further than the cumtrapz
|
||||
assumption. However, the cumtrapz is basically on top of the analytic
|
||||
function (green line), which is especially novel considering both ops
|
||||
used the same data set.
|
||||
%}
|
||||
% <+.02> love the explanatory comment. `cumtrapz` is
|
||||
% surprisingly good at what it does!
|
||||
|
||||
% check
|
||||
plot(t, erf_approx_cumsum, "b-");
|
||||
plot(t, erf_approx_cumtrapz, "r-");
|
||||
plot(t, erf_anal, "g-");
|
BIN
hw2/notes/lesson02.zip
Normal file
BIN
hw2/notes/lesson02.zip
Normal file
Binary file not shown.
75
hw2/notes/numerical_calculus.m
Normal file
75
hw2/notes/numerical_calculus.m
Normal file
@ -0,0 +1,75 @@
|
||||
%% Lesson 2c: Numerical estimation of integrals and derivatives
|
||||
% Numerical integration and differentiation are a staple of numerical
|
||||
% computing. We will now see how easy these are in MATLAB!
|
||||
clc; clear; close all;
|
||||
|
||||
%% The diff and cumsum functions
|
||||
% Note the lengths of z, zdiff, and zcumsum! (Fencepost problem)
|
||||
z = [0 5 -2 3 4];
|
||||
zdiff = diff(z);
|
||||
zcumsum = cumsum(z);
|
||||
|
||||
%% Setup: A simple function
|
||||
% Let's start with a simple example: y = x.^2. The domain is N points
|
||||
% linearly sampled from lo to hi.
|
||||
lo = -2;
|
||||
hi = 2;
|
||||
N = 1e2;
|
||||
|
||||
x = linspace(lo, hi, N);
|
||||
y = x.^2;
|
||||
plot(x, y);
|
||||
title('x^2');
|
||||
|
||||
%% Numerical (Approximate) Derivatives
|
||||
% We can calculate a difference quotient between each pair of (x,y) points
|
||||
% using the diff() function.
|
||||
dydx = diff(y)./diff(x); % difference quotient
|
||||
|
||||
figure();
|
||||
plot(x(1:end-1), dydx);
|
||||
|
||||
%% Numerical (Approximate) Integrals
|
||||
% Now suppose we want to approximate the cumulative integral (Riemann sum)
|
||||
% of a function.
|
||||
xdiff = diff(x);
|
||||
dx = xdiff(1); % spacing between points
|
||||
dx = (hi-lo) / (N-1); % alternative to the above (note: N-1)
|
||||
|
||||
Y = cumsum(y) * dx; % Riemann sum
|
||||
|
||||
figure();
|
||||
plot(x, Y);
|
||||
|
||||
%% Error metrics: Check how close we are!
|
||||
% dydx should be derivative of x.^2 = 2*x
|
||||
dydx_actual = 2 * x;
|
||||
|
||||
% Y should be \int_{-2}^{x}{t.^2 dt}
|
||||
Y_actual = (x .^3 - (-2)^3) / 3;
|
||||
|
||||
% Slightly more accurate -- can you figure out why?
|
||||
% Y_actual = (x .^3 - (-2-dx)^3) / 3;
|
||||
|
||||
% Error metric: MSE (mean square error) or RMSE (root mean square error)
|
||||
% Try changing N and see how the error changes. Try this with both the
|
||||
% integral and derivative.
|
||||
|
||||
% estimated = dydx;
|
||||
% actual = dydx_actual(1:end-1);
|
||||
estimated = Y;
|
||||
actual = Y_actual;
|
||||
mse = mean((estimated - actual) .^ 2);
|
||||
rmse = rms(estimated - actual);
|
||||
|
||||
%% Fundamental Theorem of Calculus
|
||||
% Now, use the approximate derivative to get the original function, y back
|
||||
% as yhat and plot it. You may need to use/create another variable for
|
||||
% the x axis when plotting.
|
||||
figure();
|
||||
yhat = diff(Y)./diff(x); % differentiate Y
|
||||
plot(x(1:end-1), yhat);
|
||||
|
||||
figure();
|
||||
yhat2 = cumsum(dydx) * dx; % integrate dydx
|
||||
plot(x(1:end-1), yhat2);
|
1378
hw2/notes/octave-log.txt
Normal file
1378
hw2/notes/octave-log.txt
Normal file
File diff suppressed because it is too large
Load Diff
124
hw2/notes/vectorized_operations.m
Normal file
124
hw2/notes/vectorized_operations.m
Normal file
@ -0,0 +1,124 @@
|
||||
%% Lesson 2a: More vector and matrix operations
|
||||
%
|
||||
% Objectives:
|
||||
% * Understand how to perform vector operations in MATLAB
|
||||
% * Understand arithmetic and basic functions in MATLAB
|
||||
|
||||
%% Vector operations
|
||||
% In lesson 1, we saw how to create a vector with the colon operator and
|
||||
% linspace. Now let's perform some operations on them!
|
||||
%
|
||||
% There are two common classes of operations that you can perform on vectors:
|
||||
% element-wise operations (which produce another vector) and aggregate
|
||||
% operations (which produce a scalar value). There are also many functions that
|
||||
% don't fall under these categories, but these cover many of the common
|
||||
% functions.
|
||||
|
||||
%% Element-wise operations
|
||||
% Many operations that work on scalars (which are really degenerate matrices)
|
||||
% also work element-wise on vectors (or matrices).
|
||||
x = 0:0.01:2*pi; % Create a linearly-spaced vector
|
||||
y = sin(x); % sin() works element-wise on vectors!
|
||||
y = abs(x); % same with abs()!
|
||||
y = x .^ 4; % element-wise power
|
||||
y = power(x, 4); % same as above
|
||||
|
||||
plot(x, y); % Plot y vs. x (line graph)
|
||||
title('y vs. x');
|
||||
|
||||
%% Aggregate operations
|
||||
% Another common class of operations produce a single output or statistic about
|
||||
% a vector (or matrix).
|
||||
length(x); % number of elements in x
|
||||
sum(x); % sum of the elements of x
|
||||
mean(x); % average of the elements of x
|
||||
min(x); % minimum element of x
|
||||
diff(x); % difference between adjacent elements of x
|
||||
|
||||
%% Exercise 1 : Vector operations
|
||||
T = 1e-6; % Sampling period (s)
|
||||
t = 0:T:2e-3; % Time (domain/x-axis)
|
||||
f0 = 50; % Initial frequency (Hz)
|
||||
b = 10e6; % Chirp rate (Hz/s)
|
||||
A = 10; % Amplitude
|
||||
y1 = A * cos(2*pi*f0*t + pi*b*t.^2);
|
||||
|
||||
figure;
|
||||
plot(t,y1);
|
||||
|
||||
%% Exercise: Numerical calculus
|
||||
% See numerical_calculus.m.
|
||||
|
||||
%% Basic indexing in MATLAB
|
||||
% The process of extracting values from a vector (or matrix) is called
|
||||
% "indexing." In MATLAB, indices start at 1, rather than 0 in most languages
|
||||
% (in which it is more of an "offset" than a cardinal index).
|
||||
|
||||
%% Exercise 2 : Basic indexing
|
||||
% The syntax for indexing is "x(indices)", where x is the variable to index,
|
||||
% and indices is a scalar or a vector of indices. There are many variations on
|
||||
% this. Note that indices can be any vector
|
||||
x(1); % first element of x
|
||||
x(1:3); % elements 1, 2 and 3 (inclusive!)
|
||||
x(1:length(x)); % all elements in x
|
||||
x(1:end); % same as above
|
||||
x(:); % same as above
|
||||
x(end); % last element of x
|
||||
x(3:end); % all elements from 3 onwards
|
||||
x([1,3,5]); % elements 1, 3, and 5 from x
|
||||
|
||||
x(1:2:end); % all odd-indexed elements of x
|
||||
ind = 1:2:length(x);
|
||||
x(ind); % same as the previous example
|
||||
|
||||
%% Exercises to improve your understanding
|
||||
% Take some time to go through these on your own.
|
||||
x([1,2,3]); % Will these produce the same result?
|
||||
x([3,2,1]);
|
||||
|
||||
x2 = 1:5;
|
||||
x2(6); % What will this produce?
|
||||
x2(0); % What will this produce?
|
||||
x2(1:1.5:4); % What will this produce?
|
||||
ind = 1:1.5:4;
|
||||
x2(ind); % What will this produce?
|
||||
|
||||
z = 4;
|
||||
z(1); % What will this produce?
|
||||
|
||||
%% Matrix operations
|
||||
% Matrices is closely related to vectors, and we have also explored some matrix
|
||||
% operations last class. This class, we are going to explore functions that are
|
||||
% very useful but are hard to grasp for beginners, namely reshape, meshgrid,
|
||||
% row-wise and column-wise operations.
|
||||
|
||||
%% Reshape
|
||||
% Change a matrix from one shape to another. The new shape has to have the same
|
||||
% number of elements as the original shape.
|
||||
%
|
||||
% When you are reshaping an array / matrix, the first dimension is filled
|
||||
% first, and then the second dimension, so on and so forth. I.e., elements
|
||||
% start filling down columns, then rows, etc.
|
||||
M = 1:100;
|
||||
N1 = reshape(M,2,2,[]); % It would create a 2*2*25 matrix
|
||||
N2 = reshape(M,[2,2,25]); % Same as N1
|
||||
N2(:,:,25); % Gives you 97,98,99,100
|
||||
N2(:,1,25); % Gives you 97 and 98
|
||||
|
||||
%% Row-wise / Column-wise operations
|
||||
% Vector operations can also be performed on matrices. We can perform a vector
|
||||
% operation on each row/column of a matrix, or on a particular row/column by
|
||||
% indexing.
|
||||
H = magic(4); % create the magical matrix H
|
||||
sum(H,1); % column wise sum, note that this is a row vector(default)
|
||||
fliplr(H); % flip H from left to right
|
||||
flipud(H); % flip H upside down
|
||||
H(1,:) = fliplr(H(1,:)); % flip only ONE row left to right
|
||||
H(1,:) = []; % delete the first row
|
||||
|
||||
%% Exercise 7 : Matrix Operations
|
||||
H2 = randi(20,4,5); % random 4x5 matrix with integers from 1 to 20
|
||||
sum(H2(:,2));
|
||||
mean(H2(3,:));
|
||||
C = reshape(H2,2,2,5);
|
||||
C(2,:,:) = [];
|
181
hw3/Ryan_HW3_021424.m
Normal file
181
hw3/Ryan_HW3_021424.m
Normal file
@ -0,0 +1,181 @@
|
||||
%%%% ECE-210-B HW 3 - Plotting
|
||||
% James Ryan, 02/14/24
|
||||
|
||||
% preamble
|
||||
close all; clear; clc;
|
||||
|
||||
%% Two Dimensions
|
||||
% (1)
|
||||
x = linspace(0, 2*pi, 50);
|
||||
f = sin(x);
|
||||
|
||||
figure;
|
||||
plot(x, f, "g");
|
||||
xlim([0 2*pi]); % plot only within x's range
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
xlabel("x");
|
||||
ylabel("sin(x)");
|
||||
title('Plot of sin(x) over 50 evenly spaced points between [0, 2\pi]');
|
||||
|
||||
% (2)
|
||||
x; % 50 evenly spaced pts between [0, 2pi]
|
||||
g = cos(2.*x);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(x, f, "g");
|
||||
plot(x, g, "b");
|
||||
hold off;
|
||||
xlim([0 2*pi]); % plot only within x's range
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
legend( 'y = sin(x)', ...
|
||||
'y = cos(2x)');
|
||||
title('knock knock! whose there? sin! sine who? $\pm\sqrt{\frac{1 + cos2\theta}{2}}$', "interpreter", "latex");
|
||||
|
||||
% (3)
|
||||
|
||||
figure;
|
||||
x; % 50 evenly spaced pts between [0, 2pi]
|
||||
|
||||
% top plot - f = sin(x)
|
||||
subplot(2,1,1);
|
||||
stem(x, f, "r*");
|
||||
grid on
|
||||
xlim([0 2*pi]);
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
xlabel("t [s]"); % we're pretending its time now :)
|
||||
ylabel("Position [d]");
|
||||
title('Position of a controlled laser pointer, relative to origin location');
|
||||
%subtitle('Sampled 50 times over 2\pi seconds.');
|
||||
|
||||
|
||||
% bottom plot - g = cos(2x)
|
||||
% changing cos(2x)'s amplitude; computing amplitude ratio in d
|
||||
rand_amp = 100 * rand;
|
||||
g = rand_amp .* g;
|
||||
amplitude_ratio_db = 20.*log10(rand_amp);
|
||||
|
||||
subplot(2,1,2);
|
||||
stem(x, g, "color", "#D95319", "Marker", "+", "MarkerEdgeColor", "#D95319", "MarkerFaceColor", "#D95319");
|
||||
grid on
|
||||
xlim([0 2*pi]);
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
yticks(linspace(-rand_amp, rand_amp, 5));
|
||||
|
||||
xlabel("t [s]");
|
||||
ylabel("Position [d]");
|
||||
title(sprintf('Pet cats vertical position while seeking laser pointer. \n Position Ratio (vs sin) [dB]: %d' ...
|
||||
,amplitude_ratio_db));
|
||||
%subtitle('Sampled 50 times over 2\pi seconds.');
|
||||
|
||||
|
||||
% (4)
|
||||
|
||||
pointer = imread("./pointer.jpg");
|
||||
%{
|
||||
returns a 720x1280x3 matrix, corresponding to
|
||||
720 rows
|
||||
1280 columns
|
||||
3 color channels per (row,col) pair
|
||||
to form a complete color image, in matrix form.
|
||||
Each entry in the matrix is stored as uint8, or
|
||||
an 8-bit integer, implying colors are specified as
|
||||
hex codes (eg #RRGGBB - specify the Red, Green, and
|
||||
Blue values in HEX, 8 bits per channel, 3 channels).
|
||||
%}
|
||||
|
||||
% Invert color channels
|
||||
new_pointer = 255 - pointer;
|
||||
|
||||
figure;
|
||||
imshow(pointer);
|
||||
figure;
|
||||
imshow(new_pointer);
|
||||
|
||||
%% Three Dimensions
|
||||
% (1)
|
||||
x = 0:.01:1;
|
||||
y = x;
|
||||
z = exp(-x.^2 - y.^2);
|
||||
|
||||
figure;
|
||||
|
||||
% "Create this plot
|
||||
% three times
|
||||
% in three different subplots
|
||||
% using plot3..., scatter3, surf, *and* mesh (4 tools?)"
|
||||
|
||||
% I'm making 4 plots, because you said "and", meaning all the tools.
|
||||
|
||||
% plot3
|
||||
subplot(2,2,1);
|
||||
plot3(x,y,z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (PLOT3)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
daspect([1 1 1]);
|
||||
view([-2 2 1]);
|
||||
grid on;
|
||||
|
||||
|
||||
% scatter3
|
||||
subplot(2,2,2);
|
||||
scatter3(x,y,z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (SCATTER)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
daspect([1 1 1]);
|
||||
view([-2 2 1]);
|
||||
grid on;
|
||||
|
||||
% surf
|
||||
[X, Y] = meshgrid(x);
|
||||
Z = exp(-X.^2 - Y.^2);
|
||||
|
||||
subplot(2,2,3);
|
||||
surf(X,Y,Z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (SURF)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
grid on;
|
||||
view([-2 5 1.3]);
|
||||
|
||||
% mesh
|
||||
subplot(2,2,4);
|
||||
mesh(X,Y,Z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (MESH)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
grid on;
|
||||
view([-2 5 1.3]);
|
||||
|
||||
% (2)
|
||||
t = 0:0.01:1;
|
||||
x = t.*cos(27.*t);
|
||||
y = t.*sin(27.*t);
|
||||
z = t;
|
||||
|
||||
figure;
|
||||
plot3(x,y,t);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('Wheeee!');
|
||||
grid on;
|
||||
daspect([1 1 1]);
|
||||
view([90 90 20]);
|
195
hw3/feedback/Ryan_HW3_021424.m
Normal file
195
hw3/feedback/Ryan_HW3_021424.m
Normal file
@ -0,0 +1,195 @@
|
||||
%%%% ECE-210-B HW 3 - Plotting
|
||||
% James Ryan, 02/14/24
|
||||
|
||||
% preamble
|
||||
close all; clear; clc;
|
||||
|
||||
%% Two Dimensions
|
||||
% (1)
|
||||
x = linspace(0, 2*pi, 50);
|
||||
f = sin(x);
|
||||
|
||||
figure;
|
||||
plot(x, f, "g");
|
||||
xlim([0 2*pi]); % plot only within x's range
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
xlabel("x");
|
||||
ylabel("sin(x)");
|
||||
title('Plot of sin(x) over 50 evenly spaced points between [0, 2\pi]');
|
||||
|
||||
% (2)
|
||||
x; % 50 evenly spaced pts between [0, 2pi]
|
||||
g = cos(2.*x);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(x, f, "g");
|
||||
plot(x, g, "b");
|
||||
hold off;
|
||||
xlim([0 2*pi]); % plot only within x's range
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
legend( 'y = sin(x)', ...
|
||||
'y = cos(2x)');
|
||||
% <-.02> (style) one thing about tabs: they don't always line
|
||||
% up the same way on other people's machines. this indentation
|
||||
% looks... strange to me, with my 8-space tabstops.
|
||||
title('knock knock! whose there? sin! sine who? $\pm\sqrt{\frac{1 + cos2\theta}{2}}$', "interpreter", "latex");
|
||||
% <+.02> nice.
|
||||
|
||||
% (3)
|
||||
|
||||
figure;
|
||||
x; % 50 evenly spaced pts between [0, 2pi]
|
||||
|
||||
% top plot - f = sin(x)
|
||||
subplot(2,1,1);
|
||||
stem(x, f, "r*");
|
||||
grid on
|
||||
xlim([0 2*pi]);
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
xlabel("t [s]"); % we're pretending its time now :)
|
||||
ylabel("Position [d]");
|
||||
title('Position of a controlled laser pointer, relative to origin location');
|
||||
subtitle('Sampled 50 times over 2\pi seconds.');
|
||||
% <+.01> the theme here really gets me.
|
||||
|
||||
|
||||
% bottom plot - g = cos(2x)
|
||||
% changing cos(2x)'s amplitude; computing amplitude ratio in d
|
||||
rand_amp = 100 * rand;
|
||||
g = rand_amp .* g;
|
||||
amplitude_ratio_db = 20.*log10(rand_amp);
|
||||
|
||||
subplot(2,1,2);
|
||||
stem(x, g, "color", "#D95319", "Marker", "+", "MarkerEdgeColor", "#D95319", "MarkerFaceColor", "#D95319");
|
||||
% (style) these are very long lines...
|
||||
grid on
|
||||
xlim([0 2*pi]);
|
||||
xticks([0:pi/2:2*pi]);
|
||||
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'})
|
||||
yticks(linspace(-rand_amp, rand_amp, 5));
|
||||
% usually ticks are nicely readable numbers for, well,
|
||||
% readability.
|
||||
|
||||
xlabel("t [s]");
|
||||
ylabel("Position [d]");
|
||||
title(sprintf('Pet cats vertical position while seeking laser pointer. \n Position Ratio (vs sin) [dB]: %d' ...
|
||||
,amplitude_ratio_db));
|
||||
% (interesting place for that comma)
|
||||
subtitle('Sampled 50 times over 2\pi seconds.');
|
||||
|
||||
|
||||
% (4)
|
||||
|
||||
pointer = imread("./pointer.jpg");
|
||||
% <-.05> image was not submitted! i went and found one...
|
||||
%{
|
||||
returns a 720x1280x3 matrix, corresponding to
|
||||
720 rows
|
||||
1280 columns
|
||||
3 color channels per (row,col) pair
|
||||
to form a complete color image, in matrix form.
|
||||
Each entry in the matrix is stored as uint8, or
|
||||
an 8-bit integer, implying colors are specified as
|
||||
hex codes (eg #RRGGBB - specify the Red, Green, and
|
||||
Blue values in HEX, 8 bits per channel, 3 channels).
|
||||
%}
|
||||
|
||||
% Invert color channels
|
||||
new_pointer = 255 - pointer;
|
||||
|
||||
figure;
|
||||
imshow(pointer);
|
||||
figure;
|
||||
imshow(new_pointer);
|
||||
|
||||
%% Three Dimensions
|
||||
% (1)
|
||||
x = 0:.01:1;
|
||||
y = x;
|
||||
z = exp(-x.^2 - y.^2);
|
||||
|
||||
figure;
|
||||
|
||||
% "Create this plot
|
||||
% three times
|
||||
% in three different subplots
|
||||
% using plot3..., scatter3, surf, *and* mesh (4 tools?)"
|
||||
|
||||
% I'm making 4 plots, because you said "and", meaning all the tools.
|
||||
% that is indeed what i meant for you to do. good catch.
|
||||
|
||||
% plot3
|
||||
subplot(2,2,1);
|
||||
plot3(x,y,z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (PLOT3)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
daspect([1 1 1]);
|
||||
view([-2 2 1]);
|
||||
grid on;
|
||||
|
||||
|
||||
% scatter3
|
||||
subplot(2,2,2);
|
||||
scatter3(x,y,z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (SCATTER)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
daspect([1 1 1]);
|
||||
view([-2 2 1]);
|
||||
grid on;
|
||||
% <-.00> i was not totally clear here, so i'll let this slide,
|
||||
% but i meant plot the surface itself using `scatter` and
|
||||
% `plot3`.
|
||||
|
||||
% surf
|
||||
[X, Y] = meshgrid(x);
|
||||
Z = exp(-X.^2 - Y.^2);
|
||||
|
||||
subplot(2,2,3);
|
||||
surf(X,Y,Z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (SURF)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
grid on;
|
||||
view([-2 5 1.3]);
|
||||
|
||||
% mesh
|
||||
subplot(2,2,4);
|
||||
mesh(X,Y,Z);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('z = exp(-x^2 - y^2) (MESH)');
|
||||
legend('z = exp(-x^2 - y^2)');
|
||||
grid on;
|
||||
view([-2 5 1.3]);
|
||||
|
||||
% (2)
|
||||
t = 0:0.01:1;
|
||||
x = t.*cos(27.*t);
|
||||
y = t.*sin(27.*t);
|
||||
z = t;
|
||||
|
||||
figure;
|
||||
plot3(x,y,t);
|
||||
xlabel("x");
|
||||
ylabel("y");
|
||||
zlabel("z");
|
||||
title('Wheeee!');
|
||||
grid on;
|
||||
daspect([1 1 1]);
|
||||
view([90 90 20]);
|
BIN
hw3/pointer.jpg
Normal file
BIN
hw3/pointer.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 123 KiB |
221
hw4/Ryan_HW4_022124.m
Normal file
221
hw4/Ryan_HW4_022124.m
Normal file
@ -0,0 +1,221 @@
|
||||
%%%% ECE-210-B HW 4 - Functions and Objects
|
||||
% James Ryan, 02/21/24
|
||||
|
||||
% preamble
|
||||
close all; clear; clc;
|
||||
|
||||
%% My Sinc Is Broken
|
||||
% (1)
|
||||
% see deriv.m
|
||||
x = linspace(-5, 5, 1e3);
|
||||
sinc_x = sinc(x);
|
||||
deriv_sinc = deriv(sinc_x, x);
|
||||
|
||||
% see antideriv.m
|
||||
% approximates an integral of a given function using `cumtrapz`
|
||||
int_sinc = antideriv(sinc_x, x);
|
||||
|
||||
% (2)
|
||||
% see switchsign.m
|
||||
|
||||
% (3)
|
||||
[extrema_sinc_x, extrema_x] = extrema(sinc_x, x);
|
||||
[inflect_sinc_x, inflect_x] = inflections(sinc_x, x);
|
||||
|
||||
% (4)
|
||||
figure;
|
||||
plot(x, sinc_x, x, int_sinc, x, deriv_sinc, ...
|
||||
extrema_x, extrema_sinc_x, 'r*', ...
|
||||
inflect_x, inflect_sinc_x, 'bo');
|
||||
ylim([-2 2.45]);
|
||||
xlim([-5, 5]);
|
||||
ylabel("y-axis");
|
||||
xlabel("x-axis");
|
||||
grid on;
|
||||
title( {'y = sinc(x) plotted over 1000 evenly spaced pts between x \epsilon [-5,5]', ...
|
||||
'Plotted alongside its first derivative and antiderivative.'});
|
||||
legend( 'y = sinc(x)',"$\int [sinc(x)] dx$",'$\frac{d}{dx} [sinc(x)]$', ...
|
||||
'Points of Extrema', 'Inflection Points', ...
|
||||
"Interpreter","latex");
|
||||
|
||||
%% Objectification
|
||||
% (1)
|
||||
% Matlab Classic Noteworthy Logo (TM) (C) (Not-for-individual-sale)
|
||||
L = 160*membrane(1,100);
|
||||
|
||||
f = figure;
|
||||
ax = axes;
|
||||
|
||||
s = surface(L);
|
||||
s.EdgeColor = 'none';
|
||||
view(3)
|
||||
|
||||
ax.XLim = [1 201];
|
||||
ax.YLim = [1 201];
|
||||
ax.ZLim = [-53.4 160];
|
||||
|
||||
ax.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax.CameraTarget = [77.4 60.2 63.9];
|
||||
ax.CameraUpVector = [0 0 1];
|
||||
ax.CameraViewAngle = 36.7;
|
||||
|
||||
ax.Position = [0 0 1 1];
|
||||
ax.DataAspectRatio = [1 1 .9];
|
||||
|
||||
l1 = light;
|
||||
l1.Position = [160 400 80];
|
||||
l1.Style = 'local';
|
||||
l1.Color = [0 0.8 0.8];
|
||||
|
||||
l2 = light; % l2 = l1;
|
||||
l2.Position = [.5 -1 .4];
|
||||
l2.Color = [0.8 0.8 0];
|
||||
|
||||
s.FaceColor = [0.9 0.2 0.2];
|
||||
|
||||
s.FaceLighting = 'gouraud';
|
||||
s.AmbientStrength = 0.3;
|
||||
s.DiffuseStrength = 0.6;
|
||||
s.BackFaceLighting = 'lit';
|
||||
|
||||
s.SpecularStrength = 1;
|
||||
s.SpecularColorReflectance = 1;
|
||||
s.SpecularExponent = 7;
|
||||
|
||||
axis off
|
||||
f.Color = 'black';
|
||||
|
||||
% (2)
|
||||
% Copyobj is not cooperating. Time to be lazy!
|
||||
% Matlab Classic Noteworthy Logo (TM) (C) (Not-for-individual-sale)
|
||||
|
||||
f_dupe = figure;
|
||||
ax_dupe = axes;
|
||||
|
||||
s_dupe = surface(L);
|
||||
s_dupe.EdgeColor = 'none';
|
||||
view(3)
|
||||
|
||||
ax_dupe.XLim = [1 201];
|
||||
ax_dupe.YLim = [1 201];
|
||||
ax_dupe.ZLim = [-53.4 160];
|
||||
|
||||
ax_dupe.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax_dupe.CameraTarget = [77.4 60.2 63.9];
|
||||
ax_dupe.CameraUpVector = [0 0 1];
|
||||
ax_dupe.CameraViewAngle = 36.7;
|
||||
|
||||
ax_dupe.Position = [0 0 1 1];
|
||||
ax_dupe.DataAspectRatio = [1 1 .9];
|
||||
|
||||
l3 = light;
|
||||
l3.Position = [160 400 80];
|
||||
l3.Style = 'local';
|
||||
l3.Color = [0 0.8 0.8];
|
||||
|
||||
l4 = light; % l2 = l1;
|
||||
l4.Position = [.5 -1 .4];
|
||||
l4.Color = [0.8 0.8 0];
|
||||
|
||||
s_dupe.FaceColor = [0.9 0.2 0.2];
|
||||
|
||||
s_dupe.FaceLighting = 'gouraud';
|
||||
s_dupe.AmbientStrength = 0.3;
|
||||
s_dupe.DiffuseStrength = 0.6;
|
||||
s_dupe.BackFaceLighting = 'lit';
|
||||
|
||||
s_dupe.SpecularStrength = 1;
|
||||
s_dupe.SpecularColorReflectance = 1;
|
||||
s_dupe.SpecularExponent = 7;
|
||||
|
||||
axis off
|
||||
f_dupe.Color = 'black';
|
||||
|
||||
% James's Changes
|
||||
% Change one - light at the origin!
|
||||
l4.Position = [0 0 0];
|
||||
l4.Color = [1 1 1];
|
||||
% This made the logo significantly more purple!
|
||||
|
||||
% Change two - colormap
|
||||
colormap winter;
|
||||
% I didnt really notice a change with this one.
|
||||
|
||||
% Change three - function
|
||||
s_dupe.FaceLighting = 'flat';
|
||||
% I changed the surface! It has different face lighting. Thats changing
|
||||
% the function, right?
|
||||
% It helped emphasize the purple-maroon which possesses the shape at the moment
|
||||
|
||||
% Change four - backround
|
||||
f_dupe.Color = 'red';
|
||||
% Hard to miss - the entire background is now red!
|
||||
|
||||
% (3)
|
||||
figure;
|
||||
|
||||
% Matlab <TM>
|
||||
ax_former = subplot(2,1,1);
|
||||
copyobj(ax.Children, ax_former);
|
||||
title('Matlab <TM>');
|
||||
|
||||
ax_former.XLim = [1 201];
|
||||
ax_former.YLim = [1 201];
|
||||
ax_former.ZLim = [-53.4 160];
|
||||
ax_former.XTick = [];
|
||||
ax_former.YTick = [];
|
||||
ax_former.ZTick = [];
|
||||
|
||||
ax_former.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax_former.CameraTarget = [77.4 60.2 63.9];
|
||||
ax_former.CameraUpVector = [0 0 1];
|
||||
ax_former.CameraViewAngle = 36.7;
|
||||
|
||||
l5 = light;
|
||||
l5.Position = [160 400 80];
|
||||
l5.Style = 'local';
|
||||
l5.Color = [0 0.8 0.8];
|
||||
|
||||
l6 = light; % l2 = l1;
|
||||
l6.Position = [.5 -1 .4];
|
||||
l6.Color = [0.8 0.8 0];
|
||||
|
||||
% James Plot
|
||||
ax_latter = subplot(2,1,2);
|
||||
copyobj(ax_dupe.Children, ax_latter);
|
||||
title('Conspicuous Copycat');
|
||||
|
||||
ax_latter.XLim = [1 201];
|
||||
ax_latter.YLim = [1 201];
|
||||
ax_latter.ZLim = [-53.4 160];
|
||||
ax_latter.XTick = [];
|
||||
ax_latter.YTick = [];
|
||||
ax_latter.ZTick = [];
|
||||
|
||||
|
||||
ax_latter.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax_latter.CameraTarget = [77.4 60.2 63.9];
|
||||
ax_latter.CameraUpVector = [0 0 1];
|
||||
ax_latter.CameraViewAngle = 36.7;
|
||||
|
||||
l7 = light;
|
||||
l7.Position = [160 400 80];
|
||||
l7.Style = 'local';
|
||||
l7.Color = [0 0.8 0.8];
|
||||
|
||||
l8 = light; % l2 = l1;
|
||||
l8.Position = [.5 -1 .4];
|
||||
l8.Color = [0.8 0.8 0];
|
||||
|
||||
% James's Changes
|
||||
% Change one - light at the origin!
|
||||
l8.Position = [0 0 0];
|
||||
l8.Color = [1 1 1];
|
||||
% This made the logo significantly more purple!
|
||||
|
||||
% (4)
|
||||
get(f)
|
||||
f.PaperOrientation = 'landscape';
|
||||
f.PaperType = 'a4';
|
||||
f.PaperUnits = 'centimeters';
|
||||
% My figure now is configured to print in Europe! And its sideways.
|
3
hw4/antideriv.m
Normal file
3
hw4/antideriv.m
Normal file
@ -0,0 +1,3 @@
|
||||
function int_Y_dx = antideriv(y, x)
|
||||
int_Y_dx = ( cumtrapz(y) .* (x(2) - x(1)) );
|
||||
end
|
4
hw4/deriv.m
Normal file
4
hw4/deriv.m
Normal file
@ -0,0 +1,4 @@
|
||||
function dy = deriv(y, x)
|
||||
dy = diff(y) ./ (x(2) - x(1));
|
||||
dy = dy([1 1:end]);
|
||||
end
|
5
hw4/extrema.m
Normal file
5
hw4/extrema.m
Normal file
@ -0,0 +1,5 @@
|
||||
function [y_ext, x_ext] = extrema(y, x)
|
||||
y_switch = switchsign( deriv(y, x) );
|
||||
y_ext = nonzeros(y_switch .* y);
|
||||
x_ext = nonzeros(y_switch .* x);
|
||||
end
|
231
hw4/feedback/Ryan_HW4_022124_feedback.m
Normal file
231
hw4/feedback/Ryan_HW4_022124_feedback.m
Normal file
@ -0,0 +1,231 @@
|
||||
%%%% ECE-210-B HW 4 - Functions and Objects
|
||||
% James Ryan, 02/21/24
|
||||
|
||||
% preamble
|
||||
close all; clear; clc;
|
||||
|
||||
%% My Sinc Is Broken
|
||||
% (1)
|
||||
% see deriv.m
|
||||
x = linspace(-5, 5, 1e3);
|
||||
sinc_x = sinc(x);
|
||||
deriv_sinc = deriv(sinc_x, x);
|
||||
|
||||
% see antideriv.m
|
||||
% approximates an integral of a given function using `cumtrapz`
|
||||
int_sinc = antideriv(sinc_x, x);
|
||||
|
||||
% (2)
|
||||
% see switchsign.m
|
||||
|
||||
% (3)
|
||||
[extrema_sinc_x, extrema_x] = extrema(sinc_x, x);
|
||||
[inflect_sinc_x, inflect_x] = inflections(sinc_x, x);
|
||||
|
||||
% (4)
|
||||
figure;
|
||||
plot(x, sinc_x, x, int_sinc, x, deriv_sinc, ...
|
||||
extrema_x, extrema_sinc_x, 'r*', ...
|
||||
inflect_x, inflect_sinc_x, 'bo');
|
||||
ylim([-2 2.45]);
|
||||
xlim([-5, 5]);
|
||||
ylabel("y-axis");
|
||||
xlabel("x-axis");
|
||||
grid on;
|
||||
title( {'y = sinc(x) plotted over 1000 evenly spaced pts between x \epsilon [-5,5]', ...
|
||||
'Plotted alongside its first derivative and antiderivative.'});
|
||||
legend( 'y = sinc(x)',"$\int [sinc(x)] dx$",'$\frac{d}{dx} [sinc(x)]$', ...
|
||||
'Points of Extrema', 'Inflection Points', ...
|
||||
"Interpreter","latex");
|
||||
% <+.02> this is a very pretty legend.
|
||||
|
||||
%% Objectification
|
||||
% (1)
|
||||
% Matlab Classic Noteworthy Logo (TM) (C) (Not-for-individual-sale)
|
||||
L = 160*membrane(1,100);
|
||||
|
||||
f = figure;
|
||||
ax = axes;
|
||||
|
||||
s = surface(L);
|
||||
s.EdgeColor = 'none';
|
||||
view(3)
|
||||
|
||||
ax.XLim = [1 201];
|
||||
ax.YLim = [1 201];
|
||||
ax.ZLim = [-53.4 160];
|
||||
|
||||
ax.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax.CameraTarget = [77.4 60.2 63.9];
|
||||
ax.CameraUpVector = [0 0 1];
|
||||
ax.CameraViewAngle = 36.7;
|
||||
|
||||
ax.Position = [0 0 1 1];
|
||||
ax.DataAspectRatio = [1 1 .9];
|
||||
|
||||
l1 = light;
|
||||
l1.Position = [160 400 80];
|
||||
l1.Style = 'local';
|
||||
l1.Color = [0 0.8 0.8];
|
||||
|
||||
l2 = light; % l2 = l1;
|
||||
l2.Position = [.5 -1 .4];
|
||||
l2.Color = [0.8 0.8 0];
|
||||
|
||||
s.FaceColor = [0.9 0.2 0.2];
|
||||
|
||||
s.FaceLighting = 'gouraud';
|
||||
s.AmbientStrength = 0.3;
|
||||
s.DiffuseStrength = 0.6;
|
||||
s.BackFaceLighting = 'lit';
|
||||
|
||||
s.SpecularStrength = 1;
|
||||
s.SpecularColorReflectance = 1;
|
||||
s.SpecularExponent = 7;
|
||||
|
||||
axis off
|
||||
f.Color = 'black';
|
||||
|
||||
% (2)
|
||||
% Copyobj is not cooperating. Time to be lazy!
|
||||
% Matlab FOR MS-DOS! Noteworthy Logo (TM) (C) (Not-for-individual-sale)
|
||||
disk_operating_system = 2;
|
||||
L_disk_operating_system = disk_operating_system .* L;
|
||||
|
||||
|
||||
f_dupe = figure;
|
||||
ax_dupe = axes;
|
||||
|
||||
s_dupe = surface(L_disk_operating_system);
|
||||
s_dupe.EdgeColor = 'none';
|
||||
view(3)
|
||||
|
||||
ax_dupe.XLim = disk_operating_system .* [1 201];
|
||||
ax_dupe.YLim = disk_operating_system .* [1 201];
|
||||
ax_dupe.ZLim = disk_operating_system .* [-53.4 160];
|
||||
|
||||
ax_dupe.CameraPosition = disk_operating_system .* [-145.5 -229.7 283.6];
|
||||
ax_dupe.CameraTarget = disk_operating_system .* [77.4 60.2 63.9];
|
||||
ax_dupe.CameraUpVector = [0 0 1];
|
||||
ax_dupe.CameraViewAngle = 36.7;
|
||||
|
||||
ax_dupe.Position = [0 0 1 1];
|
||||
ax_dupe.DataAspectRatio = [1 1 .9];
|
||||
|
||||
l3 = light;
|
||||
l3.Position = [160 400 80];
|
||||
l3.Style = 'local';
|
||||
l3.Color = [0 0.8 0.8];
|
||||
|
||||
l4 = light; % l2 = l1;
|
||||
l4.Position = [.5 -1 .4];
|
||||
l4.Color = [0.8 0.8 0];
|
||||
|
||||
s_dupe.FaceColor = [0.9 0.2 0.2];
|
||||
|
||||
s_dupe.FaceLighting = 'gouraud';
|
||||
s_dupe.AmbientStrength = 0.3;
|
||||
s_dupe.DiffuseStrength = 0.6;
|
||||
s_dupe.BackFaceLighting = 'lit';
|
||||
|
||||
s_dupe.SpecularStrength = 1;
|
||||
s_dupe.SpecularColorReflectance = 1;
|
||||
s_dupe.SpecularExponent = 7;
|
||||
|
||||
axis off
|
||||
f_dupe.Color = 'black';
|
||||
|
||||
% James's Changes
|
||||
% Change one - light at the origin!
|
||||
l4.Position = [0 0 0];
|
||||
l4.Color = [1 1 1];
|
||||
% This made the logo significantly more purple!
|
||||
|
||||
% Change two - colormap
|
||||
colormap winter;
|
||||
% I didnt really notice a change with this one.
|
||||
|
||||
% Change three - function
|
||||
s_dupe.FaceLighting = 'flat';
|
||||
% I changed the surface! It has different face lighting. Thats changing
|
||||
% the function, right?
|
||||
% It helped emphasize the purple-maroon which possesses the shape at the moment
|
||||
|
||||
% Change four - backround
|
||||
f_dupe.Color = 'red';
|
||||
% Hard to miss - the entire background is now red!
|
||||
|
||||
% (3)
|
||||
f_both = figure;
|
||||
|
||||
% Matlab <TM>
|
||||
ax_former = subplot(1,2,1);
|
||||
copyobj(ax.Children, ax_former);
|
||||
title('Matlab <TM>');
|
||||
|
||||
ax_former.XLim = [1 201];
|
||||
ax_former.YLim = [1 201];
|
||||
ax_former.ZLim = [-53.4 160];
|
||||
ax_former.XTick = [];
|
||||
ax_former.YTick = [];
|
||||
ax_former.ZTick = [];
|
||||
|
||||
ax_former.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax_former.CameraTarget = [77.4 60.2 63.9];
|
||||
ax_former.CameraUpVector = [0 0 1];
|
||||
ax_former.CameraViewAngle = 36.7;
|
||||
|
||||
l5 = light;
|
||||
l5.Position = [160 400 80];
|
||||
l5.Style = 'local';
|
||||
l5.Color = [0 0.8 0.8];
|
||||
|
||||
l6 = light; % l2 = l1;
|
||||
l6.Position = [.5 -1 .4];
|
||||
l6.Color = [0.8 0.8 0];
|
||||
|
||||
% James Plot Matlab for DOS
|
||||
ax_latter = subplot(1,2,2);
|
||||
copyobj(ax_dupe.Children, ax_latter);
|
||||
title('Conspicuous Copycat');
|
||||
% <+.02> MATLAB for DOS lol
|
||||
|
||||
% disk operating system, or DOS, is 2 for short :)
|
||||
|
||||
ax_latter.XLim = disk_operating_system .* [1 201];
|
||||
ax_latter.YLim = disk_operating_system .* [1 201];
|
||||
ax_latter.ZLim = disk_operating_system .* [-53.4 160];
|
||||
ax_latter.XTick = [];
|
||||
ax_latter.YTick = [];
|
||||
ax_latter.ZTick = [];
|
||||
|
||||
|
||||
ax_latter.CameraPosition = disk_operating_system .* [-145.5 -229.7 283.6];
|
||||
ax_latter.CameraTarget = disk_operating_system .* [77.4 60.2 63.9];
|
||||
ax_latter.CameraUpVector = [0 0 1];
|
||||
ax_latter.CameraViewAngle = 36.7;
|
||||
|
||||
l7 = light;
|
||||
l7.Position = [160 400 80];
|
||||
l7.Style = 'local';
|
||||
l7.Color = [0 0.8 0.8];
|
||||
|
||||
l8 = light; % l2 = l1;
|
||||
l8.Position = [.5 -1 .4];
|
||||
l8.Color = [0.8 0.8 0];
|
||||
|
||||
f_both.Color = 'green';
|
||||
|
||||
% James's Changes
|
||||
% Change one - light at the origin!
|
||||
l8.Position = [0 0 0];
|
||||
l8.Color = [1 1 1];
|
||||
% This made the logo significantly more purple!
|
||||
|
||||
% (4)
|
||||
%get(f)
|
||||
f.PaperOrientation = 'landscape';
|
||||
f.PaperType = 'a4';
|
||||
f.PaperUnits = 'centimeters';
|
||||
% My figure now is configured to print in Europe! And its sideways.
|
||||
% <+.01> lmao, incredible
|
3
hw4/feedback/antideriv.m
Normal file
3
hw4/feedback/antideriv.m
Normal file
@ -0,0 +1,3 @@
|
||||
function int_Y_dx = antideriv(y, x)
|
||||
int_Y_dx = ( cumtrapz(y) .* (x(2) - x(1)) );
|
||||
end
|
4
hw4/feedback/deriv.m
Normal file
4
hw4/feedback/deriv.m
Normal file
@ -0,0 +1,4 @@
|
||||
function dy = deriv(y, x)
|
||||
dy = diff(y) ./ (x(2) - x(1));
|
||||
dy = dy([1 1:end]);
|
||||
end
|
5
hw4/feedback/extrema.m
Normal file
5
hw4/feedback/extrema.m
Normal file
@ -0,0 +1,5 @@
|
||||
function [y_ext, x_ext] = extrema(y, x)
|
||||
y_switch = switchsign( deriv(y, x) );
|
||||
y_ext = nonzeros(y_switch .* y);
|
||||
x_ext = nonzeros(y_switch .* x);
|
||||
end
|
5
hw4/feedback/inflections.m
Normal file
5
hw4/feedback/inflections.m
Normal file
@ -0,0 +1,5 @@
|
||||
function [y_inf, x_inf] = inflections(y, x)
|
||||
y_switch = switchsign( deriv(deriv(y, x), x) );
|
||||
y_inf = nonzeros(y_switch .* y);
|
||||
x_inf = nonzeros(y_switch .* x);
|
||||
end
|
17
hw4/feedback/switchsign.m
Normal file
17
hw4/feedback/switchsign.m
Normal file
@ -0,0 +1,17 @@
|
||||
% cursed
|
||||
% lmao
|
||||
% basically - I take pairs of adjacent values on the vector `x` and add them
|
||||
% together. These sums are then checked against both members of the pair,
|
||||
% and if either member is *larger* than the sum, that indicates a sign change
|
||||
% since one of the values acted as a subtractor.
|
||||
% "Glue" is added in the comparison stage, to skew ONLY on cases where
|
||||
% we are comparing zero to zero (origin case). Its really a rounding error otherwise. lol
|
||||
% The front is padded w/ a zero.
|
||||
function ret = switchsign(x)
|
||||
sum_check = x(1:end-1) + x(2:end);
|
||||
ret = [0, ( abs(sum_check) < abs(x(1:end-1)+1e-7) ) | ( abs(sum_check) < abs(x(2:end)+1e-7) ) ];
|
||||
end
|
||||
% <-.01> works here (this is insane), but technically has an
|
||||
% error: calling `switchsign([-1 2 1 0 1 -3])` (the example i
|
||||
% gave) returns `[0 1 0 1 1 1]` rather than `[0 1 0 0 0 1]`.
|
||||
% not that that really matters. sorry...
|
5
hw4/inflections.m
Normal file
5
hw4/inflections.m
Normal file
@ -0,0 +1,5 @@
|
||||
function [y_inf, x_inf] = inflections(y, x)
|
||||
y_switch = switchsign( deriv(deriv(y, x), x) );
|
||||
y_inf = nonzeros(y_switch .* y);
|
||||
x_inf = nonzeros(y_switch .* x);
|
||||
end
|
12
hw4/switchsign.m
Normal file
12
hw4/switchsign.m
Normal file
@ -0,0 +1,12 @@
|
||||
% cursed
|
||||
% basically - I take pairs of adjacent values on the vector `x` and add them
|
||||
% together. These sums are then checked against both members of the pair,
|
||||
% and if either member is *larger* than the sum, that indicates a sign change
|
||||
% since one of the values acted as a subtractor.
|
||||
% "Glue" is added in the comparison stage, to skew ONLY on cases where
|
||||
% we are comparing zero to zero (origin case). Its really a rounding error otherwise. lol
|
||||
% The front is padded w/ a zero.
|
||||
function ret = switchsign(x)
|
||||
sum_check = x(1:end-1) + x(2:end);
|
||||
ret = [0, ( abs(sum_check) < abs(x(1:end-1)+1e-7) ) | ( abs(sum_check) < abs(x(2:end)+1e-7) ) ];
|
||||
end
|
121
hw5/Ryan_HW5_ECE210.m
Normal file
121
hw5/Ryan_HW5_ECE210.m
Normal file
@ -0,0 +1,121 @@
|
||||
%%%% ECE-210-B HW5 - Advanced Manipulations - James Ryan
|
||||
% James Ryan, 03/18/24
|
||||
|
||||
% preamble
|
||||
close all; clc; clear;
|
||||
|
||||
%% On the Air
|
||||
% 1
|
||||
R = [-9:9] + fliplr([-9:9]).'.*j;
|
||||
|
||||
% 2
|
||||
n = [1:50];
|
||||
t = [linspace(0,1,1e5)].';
|
||||
sin_int = sum(trapz(sin(t.^n)) .* (t(2) - t(1)), 'all');
|
||||
|
||||
% 3
|
||||
% a
|
||||
[theta, phi] = meshgrid(...
|
||||
linspace(0, 2*pi, 5), ...
|
||||
linspace(0, pi, 5));
|
||||
% b
|
||||
x = sin(phi) .* cos(theta);
|
||||
y = sin(phi) .* sin(theta);
|
||||
z = cos(phi);
|
||||
|
||||
% c
|
||||
figure;
|
||||
surf(x,y,z);
|
||||
pbaspect([1 1 1]);
|
||||
colormap winter;
|
||||
|
||||
title("The best sphere");
|
||||
xlabel("over axis")
|
||||
ylabel("yonder axis")
|
||||
zlabel("up axis")
|
||||
|
||||
%% Under the Sea
|
||||
% 1
|
||||
interest = sin(linspace(0,5,100).*linspace(-5,0,100).');
|
||||
half_extract = ( abs(interest - .5) < (5/1000) ) .* interest; % < min quantized val
|
||||
indices = find(half_extract);
|
||||
|
||||
% 2
|
||||
% find area on xy where both intersect
|
||||
% volume of z2 - volume of z1
|
||||
% incomplete for now
|
||||
x = linspace(0, 10, 1000);
|
||||
intersect = (1/4).*sqrt(x.^2 + (x.').^2) == exp(-(1-x.*x.').^2);
|
||||
volume = (...
|
||||
( cumtrapz( (1/4).*sqrt(x.^2 + (x.').^2) .* (x(2) - x(1)) )) - ...
|
||||
( cumtrapz( exp(-(1-x.*x.').^2 ) .* (x(2) - x(1)) ))...
|
||||
) .* intersect;
|
||||
|
||||
%% I Need a Vacation
|
||||
% 1
|
||||
A_vals = sqrt(...
|
||||
([1:256] - 99).^2 + ...
|
||||
([1:256].' - 99).^2);
|
||||
A = A_vals < 29;
|
||||
|
||||
% What's happening here is that our A indices are taken, shifted "down" 99
|
||||
% values, and then a norm is taken on them. If its final norm is < 29, its true!
|
||||
% otherwise, they're false.
|
||||
% Theres a circle localized around an origin of (i,j) = (99,99), and extends
|
||||
% out. This makes sense! relative to everywhere else, this is our lowest value,
|
||||
% and it creates the smallest norm we see (zer0).
|
||||
% This holds experimentally! If we change 29 to 1, we just get a single teeny
|
||||
% pixel at (99,99), surrounded by a false sea. So, the equality we have acts
|
||||
% to give our circle some radius.
|
||||
figure;
|
||||
imshow(A);
|
||||
|
||||
% 2
|
||||
B_vals = sqrt(...
|
||||
([1:256] - 62).^2 + ...
|
||||
([1:256].' - 62).^2);
|
||||
B = B_vals < 58;
|
||||
|
||||
% Close to the previous idea, however we shift down only by 68 units, so our
|
||||
% origin is (68, 68).
|
||||
% We have a larger radius, given we doubled our tolerance for whats true.
|
||||
|
||||
figure;
|
||||
imshow(B);
|
||||
|
||||
% 3
|
||||
C_vals = [1:256] - 4.*sin(([1:256].'./10));
|
||||
C = C_vals > 200;
|
||||
|
||||
% We get a vertical ripple!! The ripple runs along our y axis and has a period
|
||||
% of 10 and a peak-to-trough distance of 8. This acts as a wavefront from our
|
||||
% true shoreline and our false sea.
|
||||
figure;
|
||||
imshow(C);
|
||||
|
||||
% 4
|
||||
S_vals = rand(256, 256, 3);
|
||||
S = permute(permute(S_vals,[3 1 2]) .* [0 0 1].', [2 3 1]);
|
||||
|
||||
% Interpreting this as a 256 x 256 image with 3 color channels, it looks
|
||||
% like we applied a filter to kill R and G! We're left with the blue channel
|
||||
figure;
|
||||
imshow(S);
|
||||
|
||||
% 5
|
||||
M = A & ~B;
|
||||
|
||||
% We get a crescent moon! The portion of B that cast over A was negated and
|
||||
% compared, which resulted in that poriton being removed.
|
||||
% We're left with the parts of A that was free from B's grasp
|
||||
figure;
|
||||
imshow(M);
|
||||
|
||||
% 6
|
||||
Z = (C .* S) + M;
|
||||
|
||||
% Its a scene of a beach! Our moon is casting its light onto the dark beach,
|
||||
% as the water casts itself onto the shore.
|
||||
% reminds me of good times :D
|
||||
figure;
|
||||
imshow(Z);
|
150
hw5/feedback/JamesRyan_HW5_ECE210_feedback.m
Normal file
150
hw5/feedback/JamesRyan_HW5_ECE210_feedback.m
Normal file
@ -0,0 +1,150 @@
|
||||
%%%% ECE-210-B HW5 - Advanced Manipulations - James Ryan
|
||||
% James Ryan, 03/18/24
|
||||
|
||||
% preamble
|
||||
close all; clc; clear;
|
||||
|
||||
%% On the Air
|
||||
% 1
|
||||
R = [-9:9] + fliplr([-9:9]).'.*j;
|
||||
|
||||
% 2
|
||||
n = [1:50];
|
||||
t = [linspace(0,1,1e5)].';
|
||||
sin_int = sum(trapz(sin(t.^n)) .* (t(2) - t(1)), 'all');
|
||||
% <-.02> erm... the integral calculation seems to be correct
|
||||
% (though `trapz` has an independent variable argument), but
|
||||
% why the `sum` at the end? should have said this was supposed
|
||||
% to be 50 different integral estimates in parallel. :p
|
||||
|
||||
% 3
|
||||
% a
|
||||
[theta, phi] = meshgrid(...
|
||||
linspace(0, 2*pi, 5), ...
|
||||
linspace(0, pi, 5));
|
||||
% b
|
||||
x = sin(phi) .* cos(theta);
|
||||
y = sin(phi) .* sin(theta);
|
||||
z = cos(phi);
|
||||
|
||||
% c
|
||||
figure;
|
||||
surf(x,y,z);
|
||||
pbaspect([1 1 1]);
|
||||
colormap winter;
|
||||
|
||||
title("The best sphere");
|
||||
xlabel("over axis")
|
||||
ylabel("yonder axis")
|
||||
zlabel("up axis")
|
||||
|
||||
%% Under the Sea
|
||||
% 1
|
||||
interest = sin(linspace(0,5,100).*linspace(-5,0,100).');
|
||||
half_extract = ( abs(interest - .5) < (5/1000) ) .* interest; % < min quantized val
|
||||
indices = find(half_extract);
|
||||
% <-.06> two things:
|
||||
% 1. the minimum quantized value is pretty uncertain after
|
||||
% you pass the input through the sine function -- in fact,
|
||||
% the nearest points are (i think) significantly closer than
|
||||
% this. you'll have to use `min` to find them.
|
||||
% 2. i did say something about 2D indices, but that's less
|
||||
% important -- linear indices often work just as well.
|
||||
|
||||
% 2
|
||||
X = linspace(-5,5,100);
|
||||
[x, y] = meshgrid(X, X);
|
||||
intersect = (1/4).*sqrt(x.^2 + y.^2) < exp(-(1-x.*y).^2);
|
||||
% integral(end) = volume
|
||||
integral = cumtrapz(X, cumtrapz(X, exp(-(1-x.*y).^2).*intersect, 2));
|
||||
% <-.02> not, alas, the volume contained between the surfaces,
|
||||
% but just the volume under the first surface and above the
|
||||
% xy-plane. i think that's just a small oversight, though.
|
||||
|
||||
|
||||
figure;
|
||||
surf(x, y, exp(-(1-x.*y).^2).*intersect);
|
||||
xlabel("X Axis");
|
||||
ylabel("Y Axis");
|
||||
zlabel("Z Axis");
|
||||
title('Volume representing $\frac{1}{4}\sqrt{x^2 + y^2} < e^{-(1-x * y)^2}$',...
|
||||
'interpreter', 'latex');
|
||||
pbaspect([4 4 3])
|
||||
% <+.02> volume is consistent with the above, so i'll give a
|
||||
% few points.
|
||||
|
||||
|
||||
%% I Need a Vacation
|
||||
% 1
|
||||
A_vals = sqrt(...
|
||||
([1:256] - 99).^2 + ...
|
||||
([1:256].' - 99).^2);
|
||||
A = A_vals < 29;
|
||||
|
||||
% What's happening here is that our A indices are taken, shifted "down" 99
|
||||
% values, and then a norm is taken on them. If its final norm is < 29, its true!
|
||||
% otherwise, they're false.
|
||||
% Theres a circle localized around an origin of (i,j) = (99,99), and extends
|
||||
% out. This makes sense! relative to everywhere else, this is our lowest value,
|
||||
% and it creates the smallest norm we see (zer0).
|
||||
% This holds experimentally! If we change 29 to 1, we just get a single teeny
|
||||
% pixel at (99,99), surrounded by a false sea. So, the equality we have acts
|
||||
% to give our circle some radius.
|
||||
figure;
|
||||
imshow(A);
|
||||
|
||||
% 2
|
||||
B_vals = sqrt(...
|
||||
([1:256] - 62).^2 + ...
|
||||
([1:256].' - 62).^2);
|
||||
B = B_vals < 58;
|
||||
|
||||
% Close to the previous idea, however we shift down only by 68 units, so our
|
||||
% origin is (68, 68).
|
||||
% We have a larger radius, given we doubled our tolerance for whats true.
|
||||
|
||||
figure;
|
||||
imshow(B);
|
||||
|
||||
% 3
|
||||
C_vals = [1:256] - 4.*sin(([1:256].'./10));
|
||||
C = C_vals > 200;
|
||||
% <-.02> traditionally, the i index is the first index in the
|
||||
% MATLAB sense -- that is, the index which increments down each
|
||||
% column, not across each row. in short, (x, y) ←→ (j, i),
|
||||
% whereas you effectively have y equivalent to j.
|
||||
|
||||
% We get a vertical ripple!! The ripple runs along our y axis and has a period
|
||||
% of 10 and a peak-to-trough distance of 8. This acts as a wavefront from our
|
||||
% true shoreline and our false sea.
|
||||
figure;
|
||||
imshow(C);
|
||||
|
||||
% 4
|
||||
S_vals = rand(256, 256, 3);
|
||||
S = permute(permute(S_vals,[3 1 2]) .* [0 0 1].', [2 3 1]);
|
||||
|
||||
% Interpreting this as a 256 x 256 image with 3 color channels, it looks
|
||||
% like we applied a filter to kill R and G! We're left with the blue channel
|
||||
figure;
|
||||
imshow(S);
|
||||
|
||||
% 5
|
||||
M = A & ~B;
|
||||
|
||||
% We get a crescent moon! The portion of B that cast over A was negated and
|
||||
% compared, which resulted in that poriton being removed.
|
||||
% We're left with the parts of A that was free from B's grasp
|
||||
figure;
|
||||
imshow(M);
|
||||
|
||||
% 6
|
||||
Z = (C .* S) + M;
|
||||
|
||||
% Its a scene of a beach! Our moon is casting its light onto the dark beach,
|
||||
% as the water casts itself onto the shore.
|
||||
% reminds me of good times :D
|
||||
figure;
|
||||
imshow(Z);
|
||||
% ahhhh, that it does me. figured y'all could use something
|
||||
% calming.
|
136
hw6/Ryan_HW6_ECE210.m
Normal file
136
hw6/Ryan_HW6_ECE210.m
Normal file
@ -0,0 +1,136 @@
|
||||
%%%% ECE-210-B HW6 - Filters - James Ryan
|
||||
% James Ryan, 03/27/24
|
||||
|
||||
% preamble
|
||||
close all; clc; clear;
|
||||
|
||||
%% Generate white noise
|
||||
Fs = 44100; % Hz = s^-1
|
||||
N = Fs*2; % 2s * 44100 samples/sec = 88200 samples of noise
|
||||
F = linspace(-Fs/2, Fs/2, N); % range of noise
|
||||
|
||||
% noise generation
|
||||
% good way
|
||||
noise = randn(1, N); % intensity of noise
|
||||
|
||||
% funny way - requires `fortune` as a dependency
|
||||
%noise = fortune_favors_the_fontaine(Fs, 2);
|
||||
|
||||
% thank you!
|
||||
shifted_fft_mag = @(sig, len) fftshift(abs(fft(sig, len))) / len;
|
||||
|
||||
|
||||
%% Butterworth Filter
|
||||
Hbutter = butterworth;
|
||||
fvm_butter = fvtool(Hbutter, 'magnitude');
|
||||
axm_butter = fvm_butter.Children(5);
|
||||
axm_butter.YLim = [-60 5];
|
||||
axm_butter.Title.String = 'Butterworth Bandpass Filter Magnitude Plot';
|
||||
|
||||
fvp_butter = fvtool(Hbutter, 'phase');
|
||||
axp_butter = fvp_butter.Children(5);
|
||||
axp_butter.Title.String = 'Butterworth Bandpass Filter Phase Plot';
|
||||
|
||||
butter_noise = Hbutter.filter(noise);
|
||||
|
||||
fftm_butter = shifted_fft_mag(butter_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_butter);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Butterworth Bandpass Filter");
|
||||
|
||||
% to save you, i played it back in the matlab terminal:
|
||||
%soundsc(noise)
|
||||
%soundsc(fftm_butter)
|
||||
% to me, its just a mostly mute audio track minus two bursts of sound.
|
||||
% that must be the negative and positive passband regions
|
||||
% so the filter took the noise, and just took the regions outside of
|
||||
% the band and killed them.
|
||||
|
||||
%% Elliptic Filter
|
||||
Hellip = elliptic;
|
||||
fvm_ellip = fvtool(Hellip, 'magnitude');
|
||||
axm_ellip = fvm_ellip.Children(5);
|
||||
axm_ellip.YLim = [-60 5];
|
||||
axm_ellip.Title.String = 'Elliptical Bandstop Filter Magnitude Plot';
|
||||
|
||||
fvp_ellip = fvtool(Hellip, 'phase');
|
||||
axp_ellip = fvp_ellip.Children(5);
|
||||
axp_ellip.Title.String = 'Elliptical Bandstop Filter Phase Plot';
|
||||
|
||||
ellip_noise = Hellip.filter(noise);
|
||||
|
||||
fftm_ellip = shifted_fft_mag(ellip_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_ellip);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Elliptical Bandstop Filter");
|
||||
|
||||
%soundsc(fftm_ellip)
|
||||
% I can hear this one.. come back? like very faintly
|
||||
% I guess it goes to show how butterworth doesnt have that elliptic
|
||||
% stopband portion, and everything decays to -inf dB. Interesting
|
||||
% difference!
|
||||
% same pattern as the past passband
|
||||
|
||||
%% Chebyshev Type 1 Filter
|
||||
Hcheb1 = chebyshev1;
|
||||
fvm_cheb1 = fvtool(Hcheb1, 'magnitude');
|
||||
axm_cheb1 = fvm_cheb1.Children(5);
|
||||
axm_cheb1.YLim = [-60 5];
|
||||
axm_cheb1.Title.String = 'Chebyshev Type I Lowpass Filter Magnitude Plot';
|
||||
|
||||
fvp_cheb1 = fvtool(Hcheb1, 'phase');
|
||||
axp_cheb1 = fvp_cheb1.Children(5);
|
||||
axp_cheb1.Title.String = 'Chebyshev Type I Lowpass Filter Phase Plot';
|
||||
|
||||
cheb1_noise = Hcheb1.filter(noise);
|
||||
|
||||
fftm_cheb1 = shifted_fft_mag(cheb1_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_cheb1);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Chebyshev I Lowpass Filter");
|
||||
|
||||
%soundsc(fftm_cheb1)
|
||||
% It sounds choppy, almost, where it wibbles in and out for the starting portion
|
||||
% where its present. Definitely not the choice for audio filters!
|
||||
% Unless you `want` that distortion in like music production, in which case, go for it
|
||||
% Sort of sounds like a car engine firing
|
||||
|
||||
%% Chebyshev Type 2 Filter
|
||||
Hcheb2 = chebyshev2;
|
||||
fvm_cheb2 = fvtool(Hcheb2, 'magnitude');
|
||||
axm_cheb2 = fvm_cheb2.Children(5);
|
||||
axm_cheb2.YLim = [-60 5];
|
||||
axm_cheb2.Title.String = 'Chebyshev Type I Highpass Filter Magnitude Plot';
|
||||
|
||||
fvp_cheb2 = fvtool(Hcheb2, 'phase');
|
||||
axp_cheb2 = fvp_cheb2.Children(5);
|
||||
axp_cheb2.Title.String = 'Chebyshev Type II Highpass Filter Phase Plot';
|
||||
|
||||
cheb2_noise = Hcheb2.filter(noise);
|
||||
|
||||
fftm_cheb2 = shifted_fft_mag(cheb2_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_cheb2);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Chebyshev II Highpass Filter");
|
||||
|
||||
%soundsc(fftm_cheb2)
|
||||
% Its passband is sorta similar to the butterworth passband, but its die-out
|
||||
% has an audible drop off to me. maybe i missed that in others with elliptic
|
||||
% stop bands? No just played back fftm_ellip, and that dropped immediately. hmm
|
||||
% placebo, perhaps
|
27
hw6/butterworth.m
Normal file
27
hw6/butterworth.m
Normal file
@ -0,0 +1,27 @@
|
||||
function Hd = butterworth
|
||||
%BUTTERWORTH Returns a discrete-time filter object.
|
||||
|
||||
% MATLAB Code
|
||||
% Generated by MATLAB(R) 23.2 and Signal Processing Toolbox 23.2.
|
||||
% Generated on: 27-Mar-2024 18:56:52
|
||||
|
||||
% Butterworth Bandpass filter designed using FDESIGN.BANDPASS.
|
||||
|
||||
% All frequency values are in Hz.
|
||||
Fs = 44100; % Sampling Frequency
|
||||
|
||||
Fstop1 = 6300; % First Stopband Frequency
|
||||
Fpass1 = 7350; % First Passband Frequency
|
||||
Fpass2 = 14700; % Second Passband Frequency
|
||||
Fstop2 = 17640; % Second Stopband Frequency
|
||||
Astop1 = 50; % First Stopband Attenuation (dB)
|
||||
Apass = 1; % Passband Ripple (dB)
|
||||
Astop2 = 50; % Second Stopband Attenuation (dB)
|
||||
match = 'stopband'; % Band to match exactly
|
||||
|
||||
% Construct an FDESIGN object and call its BUTTER method.
|
||||
h = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, ...
|
||||
Astop2, Fs);
|
||||
Hd = design(h, 'butter', 'MatchExactly', match);
|
||||
|
||||
% [EOF]
|
12
hw6/chebyshev1.m
Normal file
12
hw6/chebyshev1.m
Normal file
@ -0,0 +1,12 @@
|
||||
function Hcheb = chebyshev1
|
||||
Fs = 44100;
|
||||
|
||||
Fpass = Fs/9;
|
||||
Fstop = Fs/8;
|
||||
|
||||
Apass = 5;
|
||||
Astop = 40;
|
||||
|
||||
specs = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs);
|
||||
Hcheb = design(specs,"cheby1",MatchExactly="passband");
|
||||
end
|
12
hw6/chebyshev2.m
Normal file
12
hw6/chebyshev2.m
Normal file
@ -0,0 +1,12 @@
|
||||
function Hcheb = chebyshev2
|
||||
Fs = 44100;
|
||||
|
||||
Fpass = Fs/3;
|
||||
Fstop = Fs/4;
|
||||
|
||||
Apass = 5;
|
||||
Astop = 40;
|
||||
|
||||
specs = fdesign.highpass(Fstop, Fpass, Astop, Apass, Fs);
|
||||
Hcheb = design(specs,"cheby2",MatchExactly="passband");
|
||||
end
|
27
hw6/elliptic.m
Normal file
27
hw6/elliptic.m
Normal file
@ -0,0 +1,27 @@
|
||||
function Hd = elliptic
|
||||
%ELLIPTIC Returns a discrete-time filter object.
|
||||
|
||||
% MATLAB Code
|
||||
% Generated by MATLAB(R) 23.2 and Signal Processing Toolbox 23.2.
|
||||
% Generated on: 27-Mar-2024 18:58:12
|
||||
|
||||
% Elliptic Bandstop filter designed using FDESIGN.BANDSTOP.
|
||||
|
||||
% All frequency values are in Hz.
|
||||
Fs = 44100; % Sampling Frequency
|
||||
|
||||
Fpass1 = 6300; % First Passband Frequency
|
||||
Fstop1 = 7350; % First Stopband Frequency
|
||||
Fstop2 = 14700; % Second Stopband Frequency
|
||||
Fpass2 = 17640; % Second Passband Frequency
|
||||
Apass1 = 1; % First Passband Ripple (dB)
|
||||
Astop = 50; % Stopband Attenuation (dB)
|
||||
Apass2 = 1; % Second Passband Ripple (dB)
|
||||
match = 'both'; % Band to match exactly
|
||||
|
||||
% Construct an FDESIGN object and call its ELLIP method.
|
||||
h = fdesign.bandstop(Fpass1, Fstop1, Fstop2, Fpass2, Apass1, Astop, ...
|
||||
Apass2, Fs);
|
||||
Hd = design(h, 'ellip', 'MatchExactly', match);
|
||||
|
||||
% [EOF]
|
138
hw6/feedback/Ryan_HW6_ECE210.m
Normal file
138
hw6/feedback/Ryan_HW6_ECE210.m
Normal file
@ -0,0 +1,138 @@
|
||||
%%%% ECE-210-B HW6 - Filters - James Ryan
|
||||
% James Ryan, 03/27/24
|
||||
|
||||
% preamble
|
||||
close all; clc; clear;
|
||||
|
||||
%% Generate white noise
|
||||
Fs = 44100; % Hz = s^-1
|
||||
N = Fs*2; % 2s * 44100 samples/sec = 88200 samples of noise
|
||||
F = linspace(-Fs/2, Fs/2, N); % range of noise
|
||||
|
||||
% noise generation
|
||||
% good way
|
||||
noise = randn(1, N); % intensity of noise
|
||||
|
||||
% funny way - requires `fortune` as a dependency
|
||||
%noise = fortune_favors_the_fontaine(Fs, 2);
|
||||
|
||||
% thank you!
|
||||
% you're welcome!
|
||||
shifted_fft_mag = @(sig, len) fftshift(abs(fft(sig, len))) / len;
|
||||
|
||||
|
||||
%% Butterworth Filter
|
||||
% had to change `5` to `end`, but otherwise perfect.
|
||||
Hbutter = butterworth;
|
||||
fvm_butter = fvtool(Hbutter, 'magnitude');
|
||||
axm_butter = fvm_butter.Children(end);
|
||||
axm_butter.YLim = [-60 5];
|
||||
axm_butter.Title.String = 'Butterworth Bandpass Filter Magnitude Plot';
|
||||
|
||||
fvp_butter = fvtool(Hbutter, 'phase');
|
||||
axp_butter = fvp_butter.Children(end);
|
||||
axp_butter.Title.String = 'Butterworth Bandpass Filter Phase Plot';
|
||||
|
||||
butter_noise = Hbutter.filter(noise);
|
||||
|
||||
fftm_butter = shifted_fft_mag(butter_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_butter);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Butterworth Bandpass Filter");
|
||||
|
||||
% to save you, i played it back in the matlab terminal:
|
||||
%soundsc(noise)
|
||||
%soundsc(fftm_butter)
|
||||
% to me, its just a mostly mute audio track minus two bursts of sound.
|
||||
% that must be the negative and positive passband regions
|
||||
% so the filter took the noise, and just took the regions outside of
|
||||
% the band and killed them.
|
||||
|
||||
%% Elliptic Filter
|
||||
Hellip = elliptic;
|
||||
fvm_ellip = fvtool(Hellip, 'magnitude');
|
||||
axm_ellip = fvm_ellip.Children(end);
|
||||
axm_ellip.YLim = [-60 5];
|
||||
axm_ellip.Title.String = 'Elliptical Bandstop Filter Magnitude Plot';
|
||||
|
||||
fvp_ellip = fvtool(Hellip, 'phase');
|
||||
axp_ellip = fvp_ellip.Children(end);
|
||||
axp_ellip.Title.String = 'Elliptical Bandstop Filter Phase Plot';
|
||||
|
||||
ellip_noise = Hellip.filter(noise);
|
||||
|
||||
fftm_ellip = shifted_fft_mag(ellip_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_ellip);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Elliptical Bandstop Filter");
|
||||
|
||||
%soundsc(fftm_ellip)
|
||||
% I can hear this one.. come back? like very faintly
|
||||
% I guess it goes to show how butterworth doesnt have that elliptic
|
||||
% stopband portion, and everything decays to -inf dB. Interesting
|
||||
% difference!
|
||||
% same pattern as the past passband
|
||||
|
||||
%% Chebyshev Type 1 Filter
|
||||
Hcheb1 = chebyshev1;
|
||||
fvm_cheb1 = fvtool(Hcheb1, 'magnitude');
|
||||
axm_cheb1 = fvm_cheb1.Children(end);
|
||||
axm_cheb1.YLim = [-60 5];
|
||||
axm_cheb1.Title.String = 'Chebyshev Type I Lowpass Filter Magnitude Plot';
|
||||
|
||||
fvp_cheb1 = fvtool(Hcheb1, 'phase');
|
||||
axp_cheb1 = fvp_cheb1.Children(end);
|
||||
axp_cheb1.Title.String = 'Chebyshev Type I Lowpass Filter Phase Plot';
|
||||
|
||||
cheb1_noise = Hcheb1.filter(noise);
|
||||
|
||||
fftm_cheb1 = shifted_fft_mag(cheb1_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_cheb1);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Chebyshev I Lowpass Filter");
|
||||
|
||||
%soundsc(fftm_cheb1)
|
||||
% It sounds choppy, almost, where it wibbles in and out for the starting portion
|
||||
% where its present. Definitely not the choice for audio filters!
|
||||
% Unless you `want` that distortion in like music production, in which case, go for it
|
||||
% Sort of sounds like a car engine firing
|
||||
|
||||
%% Chebyshev Type 2 Filter
|
||||
Hcheb2 = chebyshev2;
|
||||
fvm_cheb2 = fvtool(Hcheb2, 'magnitude');
|
||||
axm_cheb2 = fvm_cheb2.Children(end);
|
||||
axm_cheb2.YLim = [-60 5];
|
||||
axm_cheb2.Title.String = 'Chebyshev Type I Highpass Filter Magnitude Plot';
|
||||
|
||||
fvp_cheb2 = fvtool(Hcheb2, 'phase');
|
||||
axp_cheb2 = fvp_cheb2.Children(end);
|
||||
axp_cheb2.Title.String = 'Chebyshev Type II Highpass Filter Phase Plot';
|
||||
|
||||
cheb2_noise = Hcheb2.filter(noise);
|
||||
|
||||
fftm_cheb2 = shifted_fft_mag(cheb2_noise, N);
|
||||
|
||||
figure;
|
||||
plot(F, fftm_cheb2);
|
||||
xlim([-Fs/2 Fs/2]);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Magnitude (dB)");
|
||||
title("FFT of noisy signal passed through Chebyshev II Highpass Filter");
|
||||
|
||||
%soundsc(fftm_cheb2)
|
||||
% Its passband is sorta similar to the butterworth passband, but its die-out
|
||||
% has an audible drop off to me. maybe i missed that in others with elliptic
|
||||
% stop bands? No just played back fftm_ellip, and that dropped immediately. hmm
|
||||
% placebo, perhaps
|
27
hw6/feedback/butterworth.m
Normal file
27
hw6/feedback/butterworth.m
Normal file
@ -0,0 +1,27 @@
|
||||
function Hd = butterworth
|
||||
%BUTTERWORTH Returns a discrete-time filter object.
|
||||
|
||||
% MATLAB Code
|
||||
% Generated by MATLAB(R) 23.2 and Signal Processing Toolbox 23.2.
|
||||
% Generated on: 27-Mar-2024 18:56:52
|
||||
|
||||
% Butterworth Bandpass filter designed using FDESIGN.BANDPASS.
|
||||
|
||||
% All frequency values are in Hz.
|
||||
Fs = 44100; % Sampling Frequency
|
||||
|
||||
Fstop1 = 6300; % First Stopband Frequency
|
||||
Fpass1 = 7350; % First Passband Frequency
|
||||
Fpass2 = 14700; % Second Passband Frequency
|
||||
Fstop2 = 17640; % Second Stopband Frequency
|
||||
Astop1 = 50; % First Stopband Attenuation (dB)
|
||||
Apass = 1; % Passband Ripple (dB)
|
||||
Astop2 = 50; % Second Stopband Attenuation (dB)
|
||||
match = 'stopband'; % Band to match exactly
|
||||
|
||||
% Construct an FDESIGN object and call its BUTTER method.
|
||||
h = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, ...
|
||||
Astop2, Fs);
|
||||
Hd = design(h, 'butter', 'MatchExactly', match);
|
||||
|
||||
% [EOF]
|
12
hw6/feedback/chebyshev1.m
Normal file
12
hw6/feedback/chebyshev1.m
Normal file
@ -0,0 +1,12 @@
|
||||
function Hcheb = chebyshev1
|
||||
Fs = 44100;
|
||||
|
||||
Fpass = Fs/9;
|
||||
Fstop = Fs/8;
|
||||
|
||||
Apass = 5;
|
||||
Astop = 40;
|
||||
|
||||
specs = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs);
|
||||
Hcheb = design(specs,"cheby1",MatchExactly="passband");
|
||||
end
|
12
hw6/feedback/chebyshev2.m
Normal file
12
hw6/feedback/chebyshev2.m
Normal file
@ -0,0 +1,12 @@
|
||||
function Hcheb = chebyshev2
|
||||
Fs = 44100;
|
||||
|
||||
Fpass = Fs/3;
|
||||
Fstop = Fs/4;
|
||||
|
||||
Apass = 5;
|
||||
Astop = 40;
|
||||
|
||||
specs = fdesign.highpass(Fstop, Fpass, Astop, Apass, Fs);
|
||||
Hcheb = design(specs,"cheby2",MatchExactly="passband");
|
||||
end
|
27
hw6/feedback/elliptic.m
Normal file
27
hw6/feedback/elliptic.m
Normal file
@ -0,0 +1,27 @@
|
||||
function Hd = elliptic
|
||||
%ELLIPTIC Returns a discrete-time filter object.
|
||||
|
||||
% MATLAB Code
|
||||
% Generated by MATLAB(R) 23.2 and Signal Processing Toolbox 23.2.
|
||||
% Generated on: 27-Mar-2024 18:58:12
|
||||
|
||||
% Elliptic Bandstop filter designed using FDESIGN.BANDSTOP.
|
||||
|
||||
% All frequency values are in Hz.
|
||||
Fs = 44100; % Sampling Frequency
|
||||
|
||||
Fpass1 = 6300; % First Passband Frequency
|
||||
Fstop1 = 7350; % First Stopband Frequency
|
||||
Fstop2 = 14700; % Second Stopband Frequency
|
||||
Fpass2 = 17640; % Second Passband Frequency
|
||||
Apass1 = 1; % First Passband Ripple (dB)
|
||||
Astop = 50; % Stopband Attenuation (dB)
|
||||
Apass2 = 1; % Second Passband Ripple (dB)
|
||||
match = 'both'; % Band to match exactly
|
||||
|
||||
% Construct an FDESIGN object and call its ELLIP method.
|
||||
h = fdesign.bandstop(Fpass1, Fstop1, Fstop2, Fpass2, Apass1, Astop, ...
|
||||
Apass2, Fs);
|
||||
Hd = design(h, 'ellip', 'MatchExactly', match);
|
||||
|
||||
% [EOF]
|
12
hw6/feedback/fortune_favors_the_fontaine.m
Normal file
12
hw6/feedback/fortune_favors_the_fontaine.m
Normal file
@ -0,0 +1,12 @@
|
||||
function noise = fortune_favors_the_fontaine(Fs, duration)
|
||||
% make some noise
|
||||
output = "";
|
||||
while strlength(output) < Fs*duration
|
||||
[ret dirty_snippet] = unix('fortune');
|
||||
% clean
|
||||
snippet = regexprep(dirty_snippet, '[^A-Za-z]+', '');
|
||||
output = strcat(output, snippet);
|
||||
end
|
||||
noise = normalize(letters2numbers(convertStringsToChars(output)));
|
||||
end
|
||||
% <+.03> what the fuck
|
4
hw6/feedback/letters2numbers.m
Normal file
4
hw6/feedback/letters2numbers.m
Normal file
@ -0,0 +1,4 @@
|
||||
function num = letters2numbers(word)
|
||||
asc = double( upper(word) ); % http://www.asciitable.com/
|
||||
num = 26 + double('A') - asc; % simple arithmetic
|
||||
end
|
11
hw6/fortune_favors_the_fontaine.m
Normal file
11
hw6/fortune_favors_the_fontaine.m
Normal file
@ -0,0 +1,11 @@
|
||||
function noise = fortune_favors_the_fontaine(Fs, duration)
|
||||
% make some noise
|
||||
output = "";
|
||||
while strlength(output) < Fs*duration
|
||||
[ret dirty_snippet] = unix('fortune');
|
||||
% clean
|
||||
snippet = regexprep(dirty_snippet, '[^A-Za-z]+', '');
|
||||
output = strcat(output, snippet);
|
||||
end
|
||||
noise = normalize(letters2numbers(convertStringsToChars(output)));
|
||||
end
|
4
hw6/letters2numbers.m
Normal file
4
hw6/letters2numbers.m
Normal file
@ -0,0 +1,4 @@
|
||||
function num = letters2numbers(word)
|
||||
asc = double( upper(word) ); % http://www.asciitable.com/
|
||||
num = 26 + double('A') - asc; % simple arithmetic
|
||||
end
|
180
lessons/lesson01/matlab_intro.m
Normal file
180
lessons/lesson01/matlab_intro.m
Normal file
@ -0,0 +1,180 @@
|
||||
%% Lesson 1
|
||||
|
||||
%% Objective
|
||||
% After this class, you should be able to:
|
||||
%%
|
||||
%
|
||||
% * Know why you need MATLAB
|
||||
% * Manuever around the MATLAB interface
|
||||
% * Understand arithmetic and basic functions in MATLAB
|
||||
% * Know how to make scalar, vector and matrix variables in MATLAB
|
||||
% * Know how to perform matrix operations in MATLAB
|
||||
%
|
||||
%% MATLAB overview
|
||||
% MATLAB (short for MATrix LABoratory) is a commonly used interactive
|
||||
% software amongst engineers. As the name suggests, MATLAB organizes its
|
||||
% data as matrices and is specially designed for matrix multiplication. In
|
||||
% addition, it has a plethora of plugins and functions that engineers can
|
||||
% use, such as machine learning, financial analysis, filter design etc.
|
||||
%%
|
||||
% In Cooper, MATLAB is widely used in electrical and computer engineering
|
||||
% classes (signals, comm theory, machine learning, etc.), and is more broadly
|
||||
% used for these purposes and others (physics simulations, controls design,
|
||||
% etc.) across many engineering and scientific disciplines.
|
||||
%
|
||||
%% MATLAB Environment
|
||||
%%% Command window
|
||||
% The command window is sort of the equivalent of a terminal in Linux, or
|
||||
% Cygwin in Windows. When you type a command into the command window, an
|
||||
% operation performs. You can type a MATLAB command, such as 5+10, and the
|
||||
% answer would be printed out. If a variable is not assigned to the
|
||||
% command, the result would be stored in the variable ans automatically. If
|
||||
% a semicolon is added at the end of the line, the result would be
|
||||
% suppressed. You can clear the command window by typing clc. Moreover, you
|
||||
% can also type command line commands in the command window, such as ls,
|
||||
% pwd etc.
|
||||
|
||||
%%% Command history
|
||||
% When you are playing around with different functions in MATLAB, you might
|
||||
% want to trace back what functions you played with. At that time, you can
|
||||
% press the up arrow, which would show you your command history.
|
||||
|
||||
%%% Workspace
|
||||
% The workspace is where all the variables are stored. Each variable is
|
||||
% displayed as a name value pair in the workspace. If the variable is a
|
||||
% scalar, then the actual value would be shown. If it is a vector or matrix
|
||||
% , then depending on the size of the vector / matrix, it would either be
|
||||
% shown as its value or simply the size of the vector / array and its type.
|
||||
% You can double click on the variables to investigate its actual value in
|
||||
% a spreadsheet.
|
||||
|
||||
%%% Current Folder
|
||||
% The current folder shows you where you are located at in MATLAB. If you
|
||||
% execute the command pwd on the command window, it should show you the
|
||||
% location of the current folder. You might find a time where you need to
|
||||
% add a folder and link it to your current folder location. At that time,
|
||||
% you can right click and select "Add to Path". To change current folder,
|
||||
% you can execute the cd command on your command window
|
||||
|
||||
%%% Editor
|
||||
% The editor is where you can write a script and execute it. All MATLAB
|
||||
% scripts are saved as .m files. To execute a script, press the play button
|
||||
% on top in EDITOR tab. When you are executing a script, you can use the
|
||||
% semicolon to suppress the output of each line. To display a certain
|
||||
% variable at an arbitrary location in your script, you can use disp()
|
||||
% function.
|
||||
|
||||
%% Arithmetic and Basic functions
|
||||
|
||||
%% Basic Operations
|
||||
5+10; % Addition
|
||||
ans; % Prints out previous answer
|
||||
25-7; % Subtraction
|
||||
24*86; % Multiplication
|
||||
123.456*78.90; % Multiplication
|
||||
145/123; % Division
|
||||
2^5; % Exponential
|
||||
log10(1000); % Logarithm base 10
|
||||
log(exp(5)); % Natural logarithm
|
||||
sqrt(625); % Square root
|
||||
sin(pi); % sine function
|
||||
asin(0); % arc sine function
|
||||
1e5; % e5 multiplies 1 by 10^5
|
||||
1e-2; % e-2 multiplies 1 by 10^-2
|
||||
|
||||
%% Complex Numbers
|
||||
2+1i; % equivalently, 2+i
|
||||
2+1j; % equivalently, 2+j
|
||||
(2+2i)*(3+4j);
|
||||
|
||||
%% Special Numbers
|
||||
pi;
|
||||
exp(2*pi*j);
|
||||
inf;
|
||||
|
||||
%% Complex number operations
|
||||
conj(2+i); % complex conjugate
|
||||
real(2+i); % real part
|
||||
imag(2+i); % imaginary part
|
||||
abs(2+i); % magnitude/absolute value
|
||||
angle(2+i); % angle or phase
|
||||
|
||||
%% Variables
|
||||
% In matlab, there are 3 (main) different kinds of variables
|
||||
%%
|
||||
% * Scalar - A scalar appears as 1-by-1 and it is a single real or complex
|
||||
% number
|
||||
% * Vector - A vector is 1-by-n or n-by-1, and appears in MATLAB as a row or
|
||||
% column of complex numbers
|
||||
% * Matrix - A matrix is m-by-n, and appears in MATLAB as, essentially, a
|
||||
% matrix. A matrix is a 2-D array
|
||||
% If you want to see what variables you've declared, either look in the
|
||||
% Workspace section of the MATLAB window, or type:
|
||||
who;
|
||||
whos;
|
||||
|
||||
%% Scalar Variables
|
||||
a = 5;
|
||||
b = 10;
|
||||
c = a+b;
|
||||
z1 = 2+j;
|
||||
z2 = 3+4j;
|
||||
z = z1*z2;
|
||||
|
||||
%% Vector Variables
|
||||
x = [1 2+3j 2.718 pi cos(pi)]; % row vector
|
||||
x = [1, 2+3j, 2.718, pi, cos(pi)]; % same thing with commas
|
||||
xT = transpose(x); % now you created the column vector
|
||||
xT = x.'; % regular tranpose
|
||||
xT = x'; % complex tranpose
|
||||
y = [1 ; 2.5 ; 3.2 ; 4*pi; cos(pi)]; % column vector
|
||||
xlen = length(x); % length of row/col vector
|
||||
ylen = length(y); % same value as length(x)!
|
||||
|
||||
%% BE CAREFUL!
|
||||
% The following two vectors produces vectors of different sizes, the reason
|
||||
% being linspace(x1, x2, n) creates n evenly spaced points between x1 and
|
||||
% x2 , with the value of interval (x2-x1)/(n+1), while the colon operator
|
||||
% (used in the form of x1:i:x2) creates an array with [x1, x1+i, x1+2i...,
|
||||
% x1+mi], where m = (x2-x1)/i. Hence when creating a vector with the colon
|
||||
% operator or linspace, make sure you know when to use it. In conclusion,
|
||||
% linspace works with number of points, whereas the colon operator works
|
||||
% with increments.
|
||||
|
||||
%%
|
||||
v1 = linspace(-5,5,10);
|
||||
v2 = -5:1:5;
|
||||
|
||||
%% Matrix Variables
|
||||
A = [1 2 3; 4 5 6; 7 8 9]; % basic construction of matrix
|
||||
B = repmat(A,2,1); % you concatenated A one above the other
|
||||
C = [A; A]; % same as above
|
||||
C1 = transpose(C); % now you transposed C!
|
||||
C2 = C.'; % still transposed! if it is only C' then it is
|
||||
% conjugate transpose
|
||||
size(C); % Confirm that they are tranposes of each other
|
||||
size(C1);
|
||||
size(C1,1); % You get the dimension you want!
|
||||
eye(3); % Create identity matrix
|
||||
speye(30000000); % Create sparse identity matrix
|
||||
D = ones(50,60); % D is 50-by-60 ones
|
||||
E = zeros(40); % E is 40-by-40 zeros
|
||||
|
||||
%% Matrix Operations
|
||||
B+C; % addition
|
||||
B-C; % subtraction
|
||||
4*B + C/5; % multiplication and division with a constant
|
||||
A+ones(size(A)); % elementwise addition with a constant
|
||||
B*C'; % matrix multiplication
|
||||
B.*C; % elementwise multiplication
|
||||
B.^3; % elementwise exponentiation! note: do not use B^3
|
||||
2*(eye(3))^3; % only possible with square matrices
|
||||
|
||||
%% Documentation
|
||||
% If you don't know how to use a function, look it up using one of the
|
||||
% following commands. help opens a textual documentation in the
|
||||
% command window (just like Linux's man command), while doc will open a
|
||||
% new window with graphical documentation just like their website. The
|
||||
% MATLAB documentation website is also a great resource!
|
||||
help clc;
|
||||
doc size;
|
75
lessons/lesson02/numerical_calculus.m
Normal file
75
lessons/lesson02/numerical_calculus.m
Normal file
@ -0,0 +1,75 @@
|
||||
%% Lesson 2c: Numerical estimation of integrals and derivatives
|
||||
% Numerical integration and differentiation are a staple of numerical
|
||||
% computing. We will now see how easy these are in MATLAB!
|
||||
clc; clear; close all;
|
||||
|
||||
%% The diff and cumsum functions
|
||||
% Note the lengths of z, zdiff, and zcumsum! (Fencepost problem)
|
||||
z = [0 5 -2 3 4];
|
||||
zdiff = diff(z);
|
||||
zcumsum = cumsum(z);
|
||||
|
||||
%% Setup: A simple function
|
||||
% Let's start with a simple example: y = x.^2. The domain is N points
|
||||
% linearly sampled from lo to hi.
|
||||
lo = -2;
|
||||
hi = 2;
|
||||
N = 1e2;
|
||||
|
||||
x = linspace(lo, hi, N);
|
||||
y = x.^2;
|
||||
plot(x, y);
|
||||
title('x^2');
|
||||
|
||||
%% Numerical (Approximate) Derivatives
|
||||
% We can calculate a difference quotient between each pair of (x,y) points
|
||||
% using the diff() function.
|
||||
dydx = diff(y)./diff(x); % difference quotient
|
||||
|
||||
figure();
|
||||
plot(x(1:end-1), dydx);
|
||||
|
||||
%% Numerical (Approximate) Integrals
|
||||
% Now suppose we want to approximate the cumulative integral (Riemann sum)
|
||||
% of a function.
|
||||
xdiff = diff(x);
|
||||
dx = xdiff(1); % spacing between points
|
||||
dx = (hi-lo) / (N-1); % alternative to the above (note: N-1)
|
||||
|
||||
Y = cumsum(y) * dx; % Riemann sum
|
||||
|
||||
figure();
|
||||
plot(x, Y);
|
||||
|
||||
%% Error metrics: Check how close we are!
|
||||
% dydx should be derivative of x.^2 = 2*x
|
||||
dydx_actual = 2 * x;
|
||||
|
||||
% Y should be \int_{-2}^{x}{t.^2 dt}
|
||||
Y_actual = (x .^3 - (-2)^3) / 3;
|
||||
|
||||
% Slightly more accurate -- can you figure out why?
|
||||
% Y_actual = (x .^3 - (-2-dx)^3) / 3;
|
||||
|
||||
% Error metric: MSE (mean square error) or RMSE (root mean square error)
|
||||
% Try changing N and see how the error changes. Try this with both the
|
||||
% integral and derivative.
|
||||
|
||||
% estimated = dydx;
|
||||
% actual = dydx_actual(1:end-1);
|
||||
estimated = Y;
|
||||
actual = Y_actual;
|
||||
mse = mean((estimated - actual) .^ 2);
|
||||
rmse = rms(estimated - actual);
|
||||
|
||||
%% Fundamental Theorem of Calculus
|
||||
% Now, use the approximate derivative to get the original function, y back
|
||||
% as yhat and plot it. You may need to use/create another variable for
|
||||
% the x axis when plotting.
|
||||
figure();
|
||||
yhat = diff(Y)./diff(x); % differentiate Y
|
||||
plot(x(1:end-1), yhat);
|
||||
|
||||
figure();
|
||||
yhat2 = cumsum(dydx) * dx; % integrate dydx
|
||||
plot(x(1:end-1), yhat2);
|
1378
lessons/lesson02/octave-log.txt
Normal file
1378
lessons/lesson02/octave-log.txt
Normal file
File diff suppressed because it is too large
Load Diff
124
lessons/lesson02/vectorized_operations.m
Normal file
124
lessons/lesson02/vectorized_operations.m
Normal file
@ -0,0 +1,124 @@
|
||||
%% Lesson 2a: More vector and matrix operations
|
||||
%
|
||||
% Objectives:
|
||||
% * Understand how to perform vector operations in MATLAB
|
||||
% * Understand arithmetic and basic functions in MATLAB
|
||||
|
||||
%% Vector operations
|
||||
% In lesson 1, we saw how to create a vector with the colon operator and
|
||||
% linspace. Now let's perform some operations on them!
|
||||
%
|
||||
% There are two common classes of operations that you can perform on vectors:
|
||||
% element-wise operations (which produce another vector) and aggregate
|
||||
% operations (which produce a scalar value). There are also many functions that
|
||||
% don't fall under these categories, but these cover many of the common
|
||||
% functions.
|
||||
|
||||
%% Element-wise operations
|
||||
% Many operations that work on scalars (which are really degenerate matrices)
|
||||
% also work element-wise on vectors (or matrices).
|
||||
x = 0:0.01:2*pi; % Create a linearly-spaced vector
|
||||
y = sin(x); % sin() works element-wise on vectors!
|
||||
y = abs(x); % same with abs()!
|
||||
y = x .^ 4; % element-wise power
|
||||
y = power(x, 4); % same as above
|
||||
|
||||
plot(x, y); % Plot y vs. x (line graph)
|
||||
title('y vs. x');
|
||||
|
||||
%% Aggregate operations
|
||||
% Another common class of operations produce a single output or statistic about
|
||||
% a vector (or matrix).
|
||||
length(x); % number of elements in x
|
||||
sum(x); % sum of the elements of x
|
||||
mean(x); % average of the elements of x
|
||||
min(x); % minimum element of x
|
||||
diff(x); % difference between adjacent elements of x
|
||||
|
||||
%% Exercise 1 : Vector operations
|
||||
T = 1e-6; % Sampling period (s)
|
||||
t = 0:T:2e-3; % Time (domain/x-axis)
|
||||
f0 = 50; % Initial frequency (Hz)
|
||||
b = 10e6; % Chirp rate (Hz/s)
|
||||
A = 10; % Amplitude
|
||||
y1 = A * cos(2*pi*f0*t + pi*b*t.^2);
|
||||
|
||||
figure;
|
||||
plot(t,y1);
|
||||
|
||||
%% Exercise: Numerical calculus
|
||||
% See numerical_calculus.m.
|
||||
|
||||
%% Basic indexing in MATLAB
|
||||
% The process of extracting values from a vector (or matrix) is called
|
||||
% "indexing." In MATLAB, indices start at 1, rather than 0 in most languages
|
||||
% (in which it is more of an "offset" than a cardinal index).
|
||||
|
||||
%% Exercise 2 : Basic indexing
|
||||
% The syntax for indexing is "x(indices)", where x is the variable to index,
|
||||
% and indices is a scalar or a vector of indices. There are many variations on
|
||||
% this. Note that indices can be any vector
|
||||
x(1); % first element of x
|
||||
x(1:3); % elements 1, 2 and 3 (inclusive!)
|
||||
x(1:length(x)); % all elements in x
|
||||
x(1:end); % same as above
|
||||
x(:); % same as above
|
||||
x(end); % last element of x
|
||||
x(3:end); % all elements from 3 onwards
|
||||
x([1,3,5]); % elements 1, 3, and 5 from x
|
||||
|
||||
x(1:2:end); % all odd-indexed elements of x
|
||||
ind = 1:2:length(x);
|
||||
x(ind); % same as the previous example
|
||||
|
||||
%% Exercises to improve your understanding
|
||||
% Take some time to go through these on your own.
|
||||
x([1,2,3]); % Will these produce the same result?
|
||||
x([3,2,1]);
|
||||
|
||||
x2 = 1:5;
|
||||
x2(6); % What will this produce?
|
||||
x2(0); % What will this produce?
|
||||
x2(1:1.5:4); % What will this produce?
|
||||
ind = 1:1.5:4;
|
||||
x2(ind); % What will this produce?
|
||||
|
||||
z = 4;
|
||||
z(1); % What will this produce?
|
||||
|
||||
%% Matrix operations
|
||||
% Matrices is closely related to vectors, and we have also explored some matrix
|
||||
% operations last class. This class, we are going to explore functions that are
|
||||
% very useful but are hard to grasp for beginners, namely reshape, meshgrid,
|
||||
% row-wise and column-wise operations.
|
||||
|
||||
%% Reshape
|
||||
% Change a matrix from one shape to another. The new shape has to have the same
|
||||
% number of elements as the original shape.
|
||||
%
|
||||
% When you are reshaping an array / matrix, the first dimension is filled
|
||||
% first, and then the second dimension, so on and so forth. I.e., elements
|
||||
% start filling down columns, then rows, etc.
|
||||
M = 1:100;
|
||||
N1 = reshape(M,2,2,[]); % It would create a 2*2*25 matrix
|
||||
N2 = reshape(M,[2,2,25]); % Same as N1
|
||||
N2(:,:,25); % Gives you 97,98,99,100
|
||||
N2(:,1,25); % Gives you 97 and 98
|
||||
|
||||
%% Row-wise / Column-wise operations
|
||||
% Vector operations can also be performed on matrices. We can perform a vector
|
||||
% operation on each row/column of a matrix, or on a particular row/column by
|
||||
% indexing.
|
||||
H = magic(4); % create the magical matrix H
|
||||
sum(H,1); % column wise sum, note that this is a row vector(default)
|
||||
fliplr(H); % flip H from left to right
|
||||
flipud(H); % flip H upside down
|
||||
H(1,:) = fliplr(H(1,:)); % flip only ONE row left to right
|
||||
H(1,:) = []; % delete the first row
|
||||
|
||||
%% Exercise 7 : Matrix Operations
|
||||
H2 = randi(20,4,5); % random 4x5 matrix with integers from 1 to 20
|
||||
sum(H2(:,2));
|
||||
mean(H2(3,:));
|
||||
C = reshape(H2,2,2,5);
|
||||
C(2,:,:) = [];
|
57
lessons/lesson03/matlab_logo.m
Normal file
57
lessons/lesson03/matlab_logo.m
Normal file
@ -0,0 +1,57 @@
|
||||
%% Creating the MATLAB logo
|
||||
% from https://www.mathworks.com/help/matlab/visualize/creating-the-matlab-logo.html
|
||||
% Copyright (C) 2014 Mathworks Inc.
|
||||
close all; clear; clc;
|
||||
|
||||
%% Create the surface
|
||||
L = 160*membrane(1,100);
|
||||
|
||||
%% Create the figure and axes
|
||||
f = figure;
|
||||
ax = axes;
|
||||
|
||||
s = surface(L);
|
||||
s.EdgeColor = 'none';
|
||||
view(3)
|
||||
|
||||
%% Adjust axis limits
|
||||
ax.XLim = [1 201];
|
||||
ax.YLim = [1 201];
|
||||
ax.ZLim = [-53.4 160];
|
||||
|
||||
%% Adjust the camera position
|
||||
ax.CameraPosition = [-145.5 -229.7 283.6];
|
||||
ax.CameraTarget = [77.4 60.2 63.9];
|
||||
ax.CameraUpVector = [0 0 1];
|
||||
ax.CameraViewAngle = 36.7;
|
||||
|
||||
%% Adjust the position of the x, y, z axes themselves
|
||||
ax.Position = [0 0 1 1];
|
||||
ax.DataAspectRatio = [1 1 .9];
|
||||
|
||||
%% Add some light
|
||||
l1 = light;
|
||||
l1.Position = [160 400 80];
|
||||
l1.Style = 'local';
|
||||
l1.Color = [0 0.8 0.8];
|
||||
|
||||
l2 = light;
|
||||
l2.Position = [.5 -1 .4];
|
||||
l2.Color = [0.8 0.8 0];
|
||||
|
||||
%% Change the surface color
|
||||
s.FaceColor = [0.9 0.2 0.2];
|
||||
|
||||
%% Adjust lighting algorithm
|
||||
s.FaceLighting = 'gouraud';
|
||||
s.AmbientStrength = 0.3;
|
||||
s.DiffuseStrength = 0.6;
|
||||
s.BackFaceLighting = 'lit';
|
||||
|
||||
s.SpecularStrength = 1;
|
||||
s.SpecularColorReflectance = 1;
|
||||
s.SpecularExponent = 7;
|
||||
|
||||
%% Remove background
|
||||
axis off
|
||||
f.Color = 'black';
|
711
lessons/lesson03/octave-log.txt
Normal file
711
lessons/lesson03/octave-log.txt
Normal file
@ -0,0 +1,711 @@
|
||||
octave:2>
|
||||
octave:2>
|
||||
octave:2>
|
||||
octave:16>
|
||||
|
||||
y2 = x.^2;^[[201~octave:16>
|
||||
octave:16>
|
||||
octave:16>
|
||||
octave:16>
|
||||
octave:16> x = -10:0.1:10;
|
||||
y = x.^3;
|
||||
y2 = x.^2;
|
||||
octave:19> size(y)
|
||||
ans =
|
||||
|
||||
1 201
|
||||
|
||||
octave:20> size(x)
|
||||
ans =
|
||||
|
||||
1 201
|
||||
|
||||
octave:21> plot(x, y)
|
||||
octave:22> plot(x, y2)
|
||||
octave:23> hold on
|
||||
octave:24> plot(x, y)
|
||||
octave:25> figure
|
||||
octave:26> plot(x, y)
|
||||
octave:27> close all
|
||||
octave:28> figure
|
||||
octave:29> plot(x, y)
|
||||
octave:30> xlabel('x axis')
|
||||
octave:31> ylabel('y axis')
|
||||
octave:32> ylabel('y axis! yay!')
|
||||
octave:33> ylabel('y axis! yay! more letters')
|
||||
octave:34> title('a plot of a cubic')
|
||||
octave:35> grid on
|
||||
octave:36> legend('x^3')
|
||||
octave:37> hold on
|
||||
octave:38> close all
|
||||
octave:39>
|
||||
^[[201~octave:39>
|
||||
octave:39>
|
||||
octave:39>
|
||||
octave:39>
|
||||
octave:39> hold on; % plotting more than 1 plot on 1 figure rather than overwriting
|
||||
|
||||
|
||||
plot(x, y, 'DisplayName', 'x^3');
|
||||
plot(x, y2, 'DisplayName', 'x^2');
|
||||
|
||||
hold off;
|
||||
|
||||
xlabel 'x axis';
|
||||
ylabel 'y axis';
|
||||
title 'Example 1';
|
||||
xlim([-10 10]);
|
||||
ylim([-10 10]);
|
||||
% axis([-10 10 -10 10]);
|
||||
grid on;
|
||||
legend show; % 'DisplayName does thisi
|
||||
octave:50> close all
|
||||
octave:51> help axis
|
||||
'axis' is a function from the file /usr/share/octave/7.3.0/m/plot/appearance/axis.m
|
||||
|
||||
-- axis ()
|
||||
-- axis ([X_LO X_HI])
|
||||
-- axis ([X_LO X_HI Y_LO Y_HI])
|
||||
-- axis ([X_LO X_HI Y_LO Y_HI Z_LO Z_HI])
|
||||
-- axis ([X_LO X_HI Y_LO Y_HI Z_LO Z_HI C_LO C_HI])
|
||||
-- axis (OPTION)
|
||||
-- axis (OPTION1, OPTION2, ...)
|
||||
-- axis (HAX, ...)
|
||||
-- LIMITS = axis ()
|
||||
Set axis limits and appearance.
|
||||
|
||||
The argument LIMITS should be a 2-, 4-, 6-, or 8-element vector.
|
||||
The first and second elements specify the lower and upper limits
|
||||
for the x-axis. The third and fourth specify the limits for the
|
||||
y-axis, the fifth and sixth specify the limits for the z-axis, and
|
||||
the seventh and eighth specify the limits for the color axis. The
|
||||
special values '-Inf' and 'Inf' may be used to indicate that the
|
||||
limit should be automatically computed based on the data in the
|
||||
axes.
|
||||
|
||||
Without any arguments, 'axis' turns autoscaling on.
|
||||
|
||||
With one output argument, 'LIMITS = axis' returns the current axis
|
||||
limits.
|
||||
|
||||
The vector argument specifying limits is optional, and additional
|
||||
string arguments may be used to specify various axis properties.
|
||||
|
||||
The following options control the aspect ratio of the axes.
|
||||
|
||||
"equal"
|
||||
Force x-axis unit distance to equal y-axis (and z-axis) unit
|
||||
distance.
|
||||
|
||||
"square"
|
||||
Force a square axis aspect ratio.
|
||||
|
||||
"vis3d"
|
||||
Set aspect ratio modes ("DataAspectRatio",
|
||||
"PlotBoxAspectRatio") to "manual" for rotation without
|
||||
stretching.
|
||||
|
||||
"normal"
|
||||
"fill"
|
||||
Restore default automatically computed aspect ratios.
|
||||
|
||||
The following options control the way axis limits are interpreted.
|
||||
|
||||
"auto"
|
||||
"auto[xyz]"
|
||||
"auto [xyz]"
|
||||
Set nice auto-computed limits around the data for all axes, or
|
||||
only the specified axes.
|
||||
|
||||
"manual"
|
||||
Fix the current axes limits.
|
||||
|
||||
"tight"
|
||||
Fix axes to the limits of the data.
|
||||
|
||||
"image"
|
||||
Equivalent to "tight" and "equal".
|
||||
|
||||
The following options affect the appearance of tick marks.
|
||||
|
||||
"tic"
|
||||
"tic[xyz]"
|
||||
"tic [xyz]"
|
||||
Turn tick marks on for all axes, or turn them on for the
|
||||
specified axes and off for the remainder.
|
||||
|
||||
"label"
|
||||
"label[xyz]"
|
||||
"label [xyz]"
|
||||
Turn tick labels on for all axes, or turn them on for the
|
||||
specified axes and off for the remainder.
|
||||
|
||||
"nolabel"
|
||||
Turn tick labels off for all axes.
|
||||
|
||||
Note: If there are no tick marks for an axes then there can be no
|
||||
labels.
|
||||
|
||||
The following options affect the direction of increasing values on
|
||||
the axes.
|
||||
|
||||
"xy"
|
||||
Default y-axis, larger values are near the top.
|
||||
|
||||
"ij"
|
||||
Reverse y-axis, smaller values are near the top.
|
||||
|
||||
The following options affects the visibility of the axes.
|
||||
|
||||
"on"
|
||||
Make the axes visible.
|
||||
|
||||
"off"
|
||||
Hide the axes.
|
||||
|
||||
If the first argument HAX is an axes handle, then operate on this
|
||||
axes rather than the current axes returned by 'gca'.
|
||||
|
||||
Example 1: set X/Y limits and force a square aspect ratio
|
||||
|
||||
axis ([1, 2, 3, 4], "square");
|
||||
|
||||
Example 2: enable tick marks on all axes, enable tick mark labels
|
||||
only on the y-axis
|
||||
|
||||
axis ("tic", "labely");
|
||||
|
||||
See also: xlim, ylim, zlim, caxis, daspect, pbaspect, box, grid.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:52>
|
||||
|
||||
d2 = cos(t);^[[201~octave:52>
|
||||
octave:52>
|
||||
octave:52>
|
||||
octave:52>
|
||||
octave:52> t = 0:.1:10;
|
||||
d1 = sin(t);
|
||||
d2 = cos(t);
|
||||
octave:55> figure
|
||||
octave:56>
|
||||
^[[200~hold on;
|
||||
plot(t, d1);
|
||||
plot(t, d2);
|
||||
hold off;^[[201~octave:56>
|
||||
octave:56>
|
||||
octave:56>
|
||||
octave:56>
|
||||
octave:56> hold on;
|
||||
plot(t, d1);
|
||||
plot(t, d2);
|
||||
hold off;
|
||||
octave:60>
|
||||
^[[200~title 'Trig Functions';^[[201~octave:60>
|
||||
octave:60>
|
||||
octave:60>
|
||||
octave:60>
|
||||
octave:60> title 'Trig Functions';
|
||||
octave:61>
|
||||
^[[200~xlabel 'time (\mu)s';^[[201~octave:61>
|
||||
octave:61>
|
||||
octave:61>
|
||||
octave:61>
|
||||
octave:61> xlabel('time (\mu)s');
|
||||
octave:62> ylabel('voltage')
|
||||
octave:63> legend('sin', 'cos')
|
||||
octave:64> close all
|
||||
octave:65> figure
|
||||
octave:66>
|
||||
octave:66>
|
||||
octave:66>
|
||||
octave:66>
|
||||
octave:66>
|
||||
octave:66> plot(t, d1, 'b-.', t, d2, 'rp');
|
||||
octave:67>
|
||||
|
||||
^[[200~title 'Trig Functions';
|
||||
xlabel 'time ($\mu$s)' Interpreter latex
|
||||
ylabel voltage;
|
||||
legend('sin', 'cos');
|
||||
xticks(0:pi/2:10);
|
||||
xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});^[[201~octave:6
|
||||
7>
|
||||
octave:67>
|
||||
octave:67>
|
||||
octave:67>
|
||||
octave:67> title 'Trig Functions';
|
||||
xlabel 'time ($\mu$s)' Interpreter latex
|
||||
ylabel voltage;
|
||||
legend('sin', 'cos');
|
||||
xticks(0:pi/2:10);
|
||||
xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});
|
||||
sh: 1: dvipng: not found
|
||||
warning: latex_renderer: a run-time test failed and the 'latex' interpreter has been d
|
||||
isabled.
|
||||
warning: called from
|
||||
__axis_label__ at line 36 column 6
|
||||
xlabel at line 59 column 8
|
||||
|
||||
octave:73> title 'Trig Functions';
|
||||
xlabel 'time ($\mu$s)' Interpreter latex
|
||||
ylabel voltage;
|
||||
legend('sin', 'cos');
|
||||
xticks(0:pi/2:10);
|
||||
xticklabels({'0', '\pi/2', '\pi', '3\pi/2',
|
||||
octave:73>
|
||||
^[[200~xticks(0:pi/2:10);^[[201~octave:73>
|
||||
octave:73>
|
||||
octave:73>
|
||||
octave:73>
|
||||
octave:73> xticks(0:pi/2:10);
|
||||
octave:74>
|
||||
^[[200~xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});^[[201~o
|
||||
ctave:74>
|
||||
octave:74>
|
||||
octave:74>
|
||||
octave:74>
|
||||
octave:74> xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});
|
||||
octave:75> close all
|
||||
octave:76> figure
|
||||
octave:77> subplot(2, 1, 1)
|
||||
octave:78>
|
||||
^[[200~octave:75> close all^[[201~octave:78>
|
||||
octave:78>
|
||||
octave:78>
|
||||
octave:78>
|
||||
octave:78> octave:75> close all
|
||||
octave:78> figure
|
||||
octave:79> subplot(2, 1, 1)
|
||||
octave:80> plot(t, d1)
|
||||
octave:81> hold on
|
||||
octave:82> plot(t, d2)
|
||||
octave:83> title('an ordinary plot')
|
||||
octave:84> subplot(2, 1, 2)
|
||||
octave:85>
|
||||
octave:85>
|
||||
octave:85>
|
||||
octave:85>
|
||||
octave:85>
|
||||
octave:85> plot(t, d1, 'b-.', t, d2, 'rp');
|
||||
title 'Customized plot';
|
||||
octave:87> close all
|
||||
octave:88> figure
|
||||
octave:89> stem(t, d1)
|
||||
octave:90> hold on
|
||||
octave:91> scatter(t, d2)
|
||||
octave:92> close all
|
||||
octave:93>
|
||||
^[[200~t = linspace(0,10*pi);^[[201~octave:93>
|
||||
octave:93>
|
||||
octave:93>
|
||||
octave:93>
|
||||
octave:93> t = linspace(0,10*pi);
|
||||
octave:94> figure
|
||||
octave:95> plot3(sin(t), cos(t), t)
|
||||
octave:96> zlabel('t')
|
||||
octave:97> zlabel('tttttttttttttttttttttttttttttttttttt')
|
||||
octave:98> title('a helix! in space!')
|
||||
octave:99> text(0, 0, 0, 'origin')
|
||||
octave:100> close all
|
||||
octave:101>
|
||||
^[[200~a1 = -2:0.25:2;
|
||||
b1 = a1;
|
||||
[A1, B1] = meshgrid(a1);
|
||||
F = A1.*exp(-A1.^2-B1.^2);^[[201~octave:101>
|
||||
octave:101>
|
||||
octave:101>
|
||||
octave:101>
|
||||
octave:101> a1 = -2:0.25:2;
|
||||
b1 = a1;
|
||||
[A1, B1] = meshgrid(a1);
|
||||
F = A1.*exp(-A1.^2-B1.^2);
|
||||
octave:105> A1
|
||||
A1 =
|
||||
|
||||
Columns 1 through 9:
|
||||
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
-2.0000 -1.7500 -1.5000 -1.2500 -1.0000 -0.7500 -0.5000 -0.2500 0
|
||||
|
||||
Columns 10 through 17:
|
||||
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
|
||||
|
||||
octave:106> B1
|
||||
B1 =
|
||||
|
||||
Columns 1 through 9:
|
||||
|
||||
-2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000
|
||||
-1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500
|
||||
-1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000
|
||||
-1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500
|
||||
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
|
||||
-0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500
|
||||
-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
|
||||
-0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500
|
||||
0 0 0 0 0 0 0 0 0
|
||||
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
|
||||
0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
|
||||
0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
|
||||
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
|
||||
1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500
|
||||
1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000
|
||||
1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500
|
||||
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
|
||||
|
||||
Columns 10 through 17:
|
||||
|
||||
-2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000
|
||||
-1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500 -1.7500
|
||||
-1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000
|
||||
-1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500
|
||||
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
|
||||
-0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500
|
||||
-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
|
||||
-0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500
|
||||
0 0 0 0 0 0 0 0
|
||||
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
|
||||
0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
|
||||
0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
|
||||
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
|
||||
1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500
|
||||
1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000
|
||||
1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500
|
||||
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
|
||||
|
||||
octave:107> F
|
||||
F =
|
||||
|
||||
Columns 1 through 9:
|
||||
|
||||
-0.0007 -0.0015 -0.0029 -0.0048 -0.0067 -0.0078 -0.0071 -0.0043 0
|
||||
-0.0017 -0.0038 -0.0074 -0.0123 -0.0172 -0.0200 -0.0182 -0.0110 0
|
||||
-0.0039 -0.0086 -0.0167 -0.0276 -0.0388 -0.0450 -0.0410 -0.0248 0
|
||||
-0.0077 -0.0172 -0.0331 -0.0549 -0.0771 -0.0896 -0.0816 -0.0492 0
|
||||
-0.0135 -0.0301 -0.0582 -0.0964 -0.1353 -0.1572 -0.1433 -0.0864 0
|
||||
-0.0209 -0.0466 -0.0901 -0.1493 -0.2096 -0.2435 -0.2219 -0.1338 0
|
||||
-0.0285 -0.0637 -0.1231 -0.2041 -0.2865 -0.3328 -0.3033 -0.1829 0
|
||||
-0.0344 -0.0769 -0.1485 -0.2461 -0.3456 -0.4014 -0.3658 -0.2206 0
|
||||
-0.0366 -0.0818 -0.1581 -0.2620 -0.3679 -0.4273 -0.3894 -0.2349 0
|
||||
-0.0344 -0.0769 -0.1485 -0.2461 -0.3456 -0.4014 -0.3658 -0.2206 0
|
||||
-0.0285 -0.0637 -0.1231 -0.2041 -0.2865 -0.3328 -0.3033 -0.1829 0
|
||||
-0.0209 -0.0466 -0.0901 -0.1493 -0.2096 -0.2435 -0.2219 -0.1338 0
|
||||
-0.0135 -0.0301 -0.0582 -0.0964 -0.1353 -0.1572 -0.1433 -0.0864 0
|
||||
-0.0077 -0.0172 -0.0331 -0.0549 -0.0771 -0.0896 -0.0816 -0.0492 0
|
||||
-0.0039 -0.0086 -0.0167 -0.0276 -0.0388 -0.0450 -0.0410 -0.0248 0
|
||||
-0.0017 -0.0038 -0.0074 -0.0123 -0.0172 -0.0200 -0.0182 -0.0110 0
|
||||
-0.0007 -0.0015 -0.0029 -0.0048 -0.0067 -0.0078 -0.0071 -0.0043 0
|
||||
|
||||
Columns 10 through 17:
|
||||
|
||||
0.0043 0.0071 0.0078 0.0067 0.0048 0.0029 0.0015 0.0007
|
||||
0.0110 0.0182 0.0200 0.0172 0.0123 0.0074 0.0038 0.0017
|
||||
0.0248 0.0410 0.0450 0.0388 0.0276 0.0167 0.0086 0.0039
|
||||
0.0492 0.0816 0.0896 0.0771 0.0549 0.0331 0.0172 0.0077
|
||||
0.0864 0.1433 0.1572 0.1353 0.0964 0.0582 0.0301 0.0135
|
||||
0.1338 0.2219 0.2435 0.2096 0.1493 0.0901 0.0466 0.0209
|
||||
0.1829 0.3033 0.3328 0.2865 0.2041 0.1231 0.0637 0.0285
|
||||
0.2206 0.3658 0.4014 0.3456 0.2461 0.1485 0.0769 0.0344
|
||||
0.2349 0.3894 0.4273 0.3679 0.2620 0.1581 0.0818 0.0366
|
||||
0.2206 0.3658 0.4014 0.3456 0.2461 0.1485 0.0769 0.0344
|
||||
0.1829 0.3033 0.3328 0.2865 0.2041 0.1231 0.0637 0.0285
|
||||
0.1338 0.2219 0.2435 0.2096 0.1493 0.0901 0.0466 0.0209
|
||||
0.0864 0.1433 0.1572 0.1353 0.0964 0.0582 0.0301 0.0135
|
||||
0.0492 0.0816 0.0896 0.0771 0.0549 0.0331 0.0172 0.0077
|
||||
0.0248 0.0410 0.0450 0.0388 0.0276 0.0167 0.0086 0.0039
|
||||
0.0110 0.0182 0.0200 0.0172 0.0123 0.0074 0.0038 0.0017
|
||||
0.0043 0.0071 0.0078 0.0067 0.0048 0.0029 0.0015 0.0007
|
||||
|
||||
octave:108> figure
|
||||
octave:109> surf(A1, B1, F)
|
||||
octave:110> figure
|
||||
octave:111> mesh(A1, B1, F)
|
||||
octave:112> close all
|
||||
octave:113> help quiver
|
||||
'quiver' is a function from the file /usr/share/octave/7.3.0/m/plot/draw/quiver.m
|
||||
|
||||
-- quiver (U, V)
|
||||
-- quiver (X, Y, U, V)
|
||||
-- quiver (..., S)
|
||||
-- quiver (..., STYLE)
|
||||
-- quiver (..., "filled")
|
||||
-- quiver (HAX, ...)
|
||||
-- H = quiver (...)
|
||||
|
||||
Plot a 2-D vector field with arrows.
|
||||
|
||||
Plot the (U, V) components of a vector field at the grid points
|
||||
defined by (X, Y). If the grid is uniform then X and Y can be
|
||||
specified as vectors and 'meshgrid' is used to create the 2-D grid.
|
||||
|
||||
If X and Y are not given they are assumed to be '(1:M, 1:N)' where
|
||||
'[M, N] = size (U)'.
|
||||
|
||||
The optional input S is a scalar defining a scaling factor to use
|
||||
for the arrows of the field relative to the mesh spacing. A value
|
||||
of 1.0 will result in the longest vector exactly filling one grid
|
||||
square. A value of 0 disables all scaling. The default value is
|
||||
0.9.
|
||||
|
||||
The style to use for the plot can be defined with a line style
|
||||
STYLE of the same format as the 'plot' command. If a marker is
|
||||
specified then the markers are drawn at the origin of the vectors
|
||||
(which are the grid points defined by X and Y). When a marker is
|
||||
specified, the arrowhead is not drawn. If the argument "filled" is
|
||||
given then the markers are filled.
|
||||
|
||||
If the first argument HAX is an axes handle, then plot into this
|
||||
axes, rather than the current axes returned by 'gca'.
|
||||
|
||||
The optional return value H is a graphics handle to a quiver
|
||||
object. A quiver object regroups the components of the quiver plot
|
||||
(body, arrow, and marker), and allows them to be changed together.
|
||||
|
||||
Example:
|
||||
|
||||
[x, y] = meshgrid (1:2:20);
|
||||
h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
|
||||
set (h, "maxheadsize", 0.33);
|
||||
|
||||
See also: quiver3, compass, feather, plot.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:114> help quiver3
|
||||
'quiver3' is a function from the file /usr/share/octave/7.3.0/m/plot/draw/quiver3.m
|
||||
|
||||
-- quiver3 (X, Y, Z, U, V, W)
|
||||
-- quiver3 (Z, U, V, W)
|
||||
-- quiver3 (..., S)
|
||||
-- quiver3 (..., STYLE)
|
||||
-- quiver3 (..., "filled")
|
||||
-- quiver3 (HAX, ...)
|
||||
-- H = quiver3 (...)
|
||||
|
||||
Plot a 3-D vector field with arrows.
|
||||
|
||||
Plot the (U, V, W) components of a vector field at the grid points
|
||||
defined by (X, Y, Z). If the grid is uniform then X, Y, and Z can
|
||||
be specified as vectors and 'meshgrid' is used to create the 3-D
|
||||
grid.
|
||||
|
||||
If X and Y are not given they are assumed to be '(1:M, 1:N)' where
|
||||
'[M, N] = size (U)'.
|
||||
|
||||
The optional input S is a scalar defining a scaling factor to use
|
||||
for the arrows of the field relative to the mesh spacing. A value
|
||||
of 1.0 will result in the longest vector exactly filling one grid
|
||||
cube. A value of 0 disables all scaling. The default value is
|
||||
0.9.
|
||||
|
||||
The style to use for the plot can be defined with a line style
|
||||
STYLE of the same format as the 'plot' command. If a marker is
|
||||
specified then the markers are drawn at the origin of the vectors
|
||||
(which are the grid points defined by X, Y, Z). When a marker is
|
||||
specified, the arrowhead is not drawn. If the argument "filled" is
|
||||
given then the markers are filled.
|
||||
|
||||
If the first argument HAX is an axes handle, then plot into this
|
||||
axes, rather than the current axes returned by 'gca'.
|
||||
|
||||
The optional return value H is a graphics handle to a quiver
|
||||
object. A quiver object regroups the components of the quiver plot
|
||||
(body, arrow, and marker), and allows them to be changed together.
|
||||
|
||||
[x, y, z] = peaks (25);
|
||||
surf (x, y, z);
|
||||
hold on;
|
||||
[u, v, w] = surfnorm (x, y, z / 10);
|
||||
h = quiver3 (x, y, z, u, v, w);
|
||||
set (h, "maxheadsize", 0.33);
|
||||
|
||||
See also: quiver, compass, feather, plot.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:115> help feather
|
||||
'feather' is a function from the file /usr/share/octave/7.3.0/m/plot/draw/feather.m
|
||||
|
||||
-- feather (U, V)
|
||||
-- feather (Z)
|
||||
-- feather (..., STYLE)
|
||||
-- feather (HAX, ...)
|
||||
-- H = feather (...)
|
||||
|
||||
Plot the '(U, V)' components of a vector field emanating from
|
||||
equidistant points on the x-axis.
|
||||
|
||||
If a single complex argument Z is given, then 'U = real (Z)' and 'V
|
||||
= imag (Z)'.
|
||||
|
||||
The style to use for the plot can be defined with a line style
|
||||
STYLE of the same format as the 'plot' command.
|
||||
|
||||
If the first argument HAX is an axes handle, then plot into this
|
||||
axes, rather than the current axes returned by 'gca'.
|
||||
|
||||
The optional return value H is a vector of graphics handles to the
|
||||
line objects representing the drawn vectors.
|
||||
|
||||
phi = [0 : 15 : 360] * pi/180;
|
||||
feather (sin (phi), cos (phi));
|
||||
|
||||
See also: plot, quiver, compass.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:116> figure
|
||||
octave:117> imshow([1 0; 0 1])
|
||||
octave:118> imshow(1:255)
|
||||
octave:119> imshow([1 .5; .5 1])
|
||||
octave:120> whos
|
||||
Variables visible from the current scope:
|
||||
|
||||
variables in scope: top scope
|
||||
|
||||
Attr Name Size Bytes Class
|
||||
octave:124> whos
|
||||
octave:125> x = [1 0; 0 1]
|
||||
x =
|
||||
|
||||
1 0
|
||||
0 1
|
||||
|
||||
octave:126> whose
|
||||
error: 'whose' undefined near line 1, column 1
|
||||
octave:127> whos
|
||||
Variables visible from the current scope:
|
||||
|
||||
variables in scope: top scope
|
||||
|
||||
Attr Name Size Bytes Class
|
||||
==== ==== ==== ===== =====
|
||||
x 2x2 32 double
|
||||
|
||||
Total is 4 elements using 32 bytes
|
||||
|
||||
octave:128> imshow(x)
|
||||
octave:129> imshow(int(x))
|
||||
error: 'int' undefined near line 1, column 8
|
||||
octave:130> int
|
||||
int16 int64 integral2 interp2 interpn intmin
|
||||
int2str int8 integral3 interp3 intersect
|
||||
int32 integral interp1 interpft intmax
|
||||
octave:130> imshow(int8(x))
|
||||
error: imshow: invalid data type for image
|
||||
error: called from
|
||||
imshow at line 199 column 9
|
||||
octave:131> close all
|
||||
octave:132> image = reshape(linspace(0, 1, 12), 2, 2, 3)
|
||||
image =
|
||||
|
||||
ans(:,:,1) =
|
||||
|
||||
0 0.1818
|
||||
0.0909 0.2727
|
||||
|
||||
ans(:,:,2) =
|
||||
|
||||
0.3636 0.5455
|
||||
0.4545 0.6364
|
||||
|
||||
ans(:,:,3) =
|
||||
|
||||
0.7273 0.9091
|
||||
0.8182 1.0000
|
||||
|
||||
octave:133> imshow(image)
|
||||
octave:134> image(:, :, 3) = 0
|
||||
image =
|
||||
|
||||
ans(:,:,1) =
|
||||
|
||||
0 0.1818
|
||||
0.0909 0.2727
|
||||
|
||||
ans(:,:,2) =
|
||||
|
||||
0.3636 0.5455
|
||||
0.4545 0.6364
|
||||
|
||||
ans(:,:,3) =
|
||||
|
||||
0 0
|
||||
0 0
|
||||
|
||||
octave:135> imshow(image)
|
||||
octave:136> image(:, :, 2) = 0
|
||||
image =
|
||||
|
||||
ans(:,:,1) =
|
||||
|
||||
0 0.1818
|
||||
0.0909 0.2727
|
||||
|
||||
ans(:,:,2) =
|
||||
|
||||
0 0
|
||||
0 0
|
||||
|
||||
ans(:,:,3) =
|
||||
|
||||
0 0
|
||||
0 0
|
||||
|
||||
octave:137> imshow(image)
|
||||
octave:138> close all
|
||||
octave:139>
|
152
lessons/lesson03/plotting.m
Normal file
152
lessons/lesson03/plotting.m
Normal file
@ -0,0 +1,152 @@
|
||||
%% Lesson 5a: Plotting
|
||||
%
|
||||
% We are going to go through several plotting schemes, and explore how you
|
||||
% can customize plotting. We would go through 2D plotting, surface
|
||||
% plotting, subplot, stem plot and 3D plotting
|
||||
%
|
||||
% In this file the `command syntax` style of functions will be used when
|
||||
% possible, just to get you familiar with the style.
|
||||
clear; clc; close all;
|
||||
|
||||
%% 2D plotting: line graphs
|
||||
% In general, always annotate your plots appropriately! Use a title,
|
||||
% axis labels, legends, etc. as necessary. Set appropriate bounds,
|
||||
% appropriate scaling (e.g., linear vs. logarithmic), and the correct
|
||||
% type of plot. We'll start simple with line plots.
|
||||
x = -10:0.1:10;
|
||||
y = x.^3;
|
||||
y2 = x.^2;
|
||||
|
||||
hold on; % plotting more than 1 plot on 1 figure rather than overwriting
|
||||
|
||||
plot(x, y, 'DisplayName', 'x^3');
|
||||
plot(x, y2, 'DisplayName', 'x^2');
|
||||
|
||||
hold off;
|
||||
|
||||
xlabel 'x axis';
|
||||
ylabel 'y axis';
|
||||
title 'Example 1';
|
||||
xlim([-10 10]);
|
||||
ylim([-10 10]);
|
||||
% axis([-10 10 -10 10]);
|
||||
grid on;
|
||||
legend show; % 'DisplayName does this
|
||||
|
||||
%% Example 2: Plotting sine and cosine
|
||||
t = 0:.1:10;
|
||||
d1 = sin(t);
|
||||
d2 = cos(t);
|
||||
|
||||
figure;
|
||||
|
||||
% plot(t, [d1.' d2.']);
|
||||
% plot(t, d1, t, d2);
|
||||
|
||||
hold on;
|
||||
plot(t, d1);
|
||||
plot(t, d2);
|
||||
hold off;
|
||||
|
||||
title 'Trig Functions';
|
||||
|
||||
% We can use some LaTeX-like symbols like \mu, \beta, \pi, \leq, \infty.
|
||||
% For full LaTeX support use the `Interpreter: latex` option
|
||||
xlabel 'time (\mu)s';
|
||||
|
||||
ylabel voltage;
|
||||
legend sin cos;
|
||||
|
||||
% Save to file; gcf() is "get current figure"
|
||||
exportgraphics(gcf(), "sample_plot.png");
|
||||
|
||||
%% More plotting options
|
||||
% Legends, axis ticks (and labels), LaTeX interpreter
|
||||
figure;
|
||||
|
||||
% Options for changing line pattern and color.
|
||||
% Don't need `hold on`/`hold off` if multiple lines plotted with a single
|
||||
% `plot` function.
|
||||
plot(t, d1, 'b-.', t, d2, 'rp');
|
||||
|
||||
title 'Trig Functions';
|
||||
xlabel 'time ($\mu$s)' Interpreter latex
|
||||
ylabel voltage;
|
||||
legend('sin', 'cos');
|
||||
xticks(0:pi/2:10);
|
||||
xticklabels({'0', '\pi/2', '\pi', '3\pi/2', '2\pi', '5\pi/2', '3\pi'});
|
||||
|
||||
% Many other options availible for plotting. Check the documentation or
|
||||
% search online for options.
|
||||
|
||||
%% Subplots
|
||||
% Subplots exist for stylistic purposes. Let's say you have a signal and
|
||||
% you want to plot the magnitude and phase of the signal itself. It would
|
||||
% make more sense if the magnitude and phase plots exist in the same
|
||||
% figure. There are several examples fo subplot below to explain how it
|
||||
% works. Note that linear indexing of plots is different from normal linear
|
||||
% indexing.
|
||||
|
||||
figure;
|
||||
subplot(2,2,1); % subplot(# of rows, # of columns, index)
|
||||
plot(t,d1);
|
||||
hold on;
|
||||
plot(t, d2);
|
||||
title 'Normal plot';
|
||||
|
||||
subplot(2, 2, 2); % index runs down rows, not columns!
|
||||
plot(t, d1, 'b-.', t, d2, 'rp');
|
||||
title 'Customized plot';
|
||||
|
||||
%% Stem plots
|
||||
% stem plots are particularly useful when you are representing digital
|
||||
% signals, hence it is good (and necessary) to learn them too!
|
||||
% subplot(2,2,[3 4]) % takes up two slots
|
||||
subplot(2, 1, 2);
|
||||
hold on;
|
||||
stem(t, d1);
|
||||
stem(t, d2);
|
||||
hold off;
|
||||
title 'Stem plots';
|
||||
|
||||
sgtitle Subplots;
|
||||
|
||||
%% Tiling -- like subplots but newer
|
||||
figure;
|
||||
tiledlayout(2, 2);
|
||||
|
||||
nexttile;
|
||||
plot(t, d1);
|
||||
|
||||
nexttile;
|
||||
plot(t, d2);
|
||||
|
||||
%% A 3-D parametric function
|
||||
% A helix curve
|
||||
t = linspace(0,10*pi);
|
||||
|
||||
figure;
|
||||
plot3(sin(t), cos(t), t);
|
||||
xlabel sin(t);
|
||||
ylabel cos(t);
|
||||
zlabel t;
|
||||
text(0, 0, 0, 'origin');
|
||||
grid on;
|
||||
title Helix;
|
||||
|
||||
%% Surface plot
|
||||
% A shaded look for 2-D functions
|
||||
%
|
||||
% $f(x) = x\exp -(x^2+y^2)$
|
||||
a1 = -2:0.25:2;
|
||||
b1 = a1;
|
||||
[A1, B1] = meshgrid(a1);
|
||||
F = A1.*exp(-A1.^2-B1.^2);
|
||||
|
||||
figure;
|
||||
surf(A1,B1,F);
|
||||
|
||||
%% Mesh plot
|
||||
% A wireframe look for 2-D functions
|
||||
figure;
|
||||
mesh(A1,B1,F);
|
24
lessons/lesson04/BasicClass.m
Normal file
24
lessons/lesson04/BasicClass.m
Normal file
@ -0,0 +1,24 @@
|
||||
classdef BasicClass
|
||||
% BasicClass is a simple sample class definition
|
||||
properties (Access = private)
|
||||
vals % vector
|
||||
end
|
||||
|
||||
methods
|
||||
function obj = BasicClass(x)
|
||||
% Construct an instance of this class
|
||||
% Sets x to the object's vals property
|
||||
obj.vals = x;
|
||||
end
|
||||
|
||||
function z = getVals(obj)
|
||||
z = obj.vals;
|
||||
end
|
||||
|
||||
function z = findClosest(obj,n)
|
||||
% Find closest entry in obj.vals to n
|
||||
[~, ind] = min(abs(obj.vals - n));
|
||||
z = obj.vals(ind);
|
||||
end
|
||||
end
|
||||
end
|
57
lessons/lesson04/controlflow.m
Normal file
57
lessons/lesson04/controlflow.m
Normal file
@ -0,0 +1,57 @@
|
||||
%% Lesson 4b: Control Sequences
|
||||
%
|
||||
% Since it likes to play at being a general purpose programming language,
|
||||
% MATLAB has control flow constructs (if, loops, etc.). Sometimes not
|
||||
% everything is achievable with a linear set of instructions and vectorization,
|
||||
% such as in particularly complex situations.
|
||||
|
||||
clear; clc; close all;
|
||||
|
||||
%% For loops (a review)
|
||||
total=0;
|
||||
for i=1:10
|
||||
total = total + i;
|
||||
end
|
||||
total
|
||||
|
||||
%% If...Else Statements
|
||||
gpa = 2.3;
|
||||
if gpa < 2
|
||||
fprintf('You are in DANGER!!!\n')
|
||||
elseif gpa >= 2 && gpa < 3.5
|
||||
fprintf('You are safe.\n')
|
||||
elseif gpa >= 3.5 && gpa < 3.7
|
||||
fprintf('Cum Laude\n')
|
||||
elseif gpa >= 3.7 && gpa < 3.8
|
||||
fprintf('Magna Cum Laude\n')
|
||||
elseif gpa >= 3.8 && gpa < 4
|
||||
fprintf('Summa Cum Laude\n')
|
||||
else
|
||||
fprintf("invalid gpa\n")
|
||||
end
|
||||
|
||||
%% While loop
|
||||
% Iterate while a condition is true, as opposed to iterating over a vector.
|
||||
total = 0;
|
||||
i = 0;
|
||||
while i <= 10
|
||||
total = total + i;
|
||||
i = i+1;
|
||||
end
|
||||
total
|
||||
|
||||
%% Try/catch blocks
|
||||
% Try and catch allow for error handling, which can be useful when using
|
||||
% user-supplied input that may be invalid. See the documentation of any
|
||||
% function to see what errors it may throw.
|
||||
%
|
||||
% It is also a good idea for you to validate input if writing a function
|
||||
% intended to be used by other people. This is very common in all MATLAB
|
||||
% builtin/toolbox functions.
|
||||
try
|
||||
a = [1 2; 3 4];
|
||||
b = [1 2 3 4];
|
||||
c = a*b % can't do this! not the right dimensions!
|
||||
catch err
|
||||
fprintf('Hey! Not allowed!\n');
|
||||
end
|
162
lessons/lesson04/datatypes.m
Normal file
162
lessons/lesson04/datatypes.m
Normal file
@ -0,0 +1,162 @@
|
||||
%% Lesson 5b: Datatypes
|
||||
% There are several basic data types in MATLAB:
|
||||
%
|
||||
% - single, double (floating pt. 32 and 64 bit respectively)
|
||||
% - int8, int16, int32, int64 (different size integers)
|
||||
% - uint8, uint16, uint32, uint64 (different size unsigned intergers)
|
||||
% - logicals
|
||||
% - char arrays, strings
|
||||
% - cell arrays
|
||||
clc; clear; close all;
|
||||
|
||||
%% What type is this?
|
||||
% You can get the data type of a variable using the class function. Most
|
||||
% of the time, values default to fp64, which is often good for
|
||||
% scientific computing with high accuracy.
|
||||
a = 10;
|
||||
class(a);
|
||||
|
||||
b = int8(a);
|
||||
class(b);
|
||||
|
||||
%% Data Type Sizes
|
||||
% Different data types take up different amounts of space in your memory
|
||||
% and hard drive. Let's take a look at some standard sizes in MATLAB.
|
||||
A = randn(1, 'double');
|
||||
B = randn(1, 'single');
|
||||
C = true(1);
|
||||
D = 'D';
|
||||
|
||||
% lists info of the variables in the current workspace
|
||||
whos;
|
||||
|
||||
% If your data is getting too large, it can help to cast to smaller types.
|
||||
% `single` is a smaller fp type, and uint8/uint16 are smaller
|
||||
|
||||
%% Different Interpretations
|
||||
% Be careful with what data types you feed into built in functions.
|
||||
% MATLAB will have different responses to different types.
|
||||
|
||||
% imshow with ints
|
||||
imshow(uint8(rand(128, 128, 3)));
|
||||
|
||||
%%
|
||||
% imshow with doubles
|
||||
imshow(double(rand(128, 128, 3)));
|
||||
|
||||
%% Overflow and Underflow
|
||||
% With floating point, we are trying to represent real numbers. Obviously
|
||||
% there must be some spacing between representable numbers using a
|
||||
% fixed-size representation. Let's take a look.
|
||||
%
|
||||
% eps() shows the error between a number and its true value given IEEE
|
||||
% floating-point.
|
||||
L = logspace(-400, 400, 4096);
|
||||
loglog(L, eps(L), single(L), eps(single(L)));
|
||||
|
||||
% As the plot shows, doubles have a much larger range as well as higher
|
||||
% precision at each point. Let's see how this applies in practice.
|
||||
|
||||
%% More examples examples of eps
|
||||
eps(1);
|
||||
(1 + 0.5001*eps(1)) - 1;
|
||||
(1 + 0.4999*eps(1)) - 1;
|
||||
|
||||
eps(1e16);
|
||||
1 + 1e16 == 1e16;
|
||||
|
||||
%% More examples of overflow/underflow
|
||||
single(10^50);
|
||||
single(10^-50);
|
||||
|
||||
uint8(256);
|
||||
int8(-129);
|
||||
|
||||
%% Cell Arrays
|
||||
% Matrices can only store values of the same type (homogenous data).
|
||||
% Cell arrays can store heterogeneous (but still rectangular) data.
|
||||
% However, they are relatively slow and should be used sparingly.
|
||||
courses = {
|
||||
'', 'Modern Physics', 'Signals and Systems', ...
|
||||
'Complex Analysis', 'Drawing and Sketching for Engineers'; ...
|
||||
|
||||
'Grades', 70 + 3*randn(132,1), 80 + 3*randn(41,1), ...
|
||||
40 + 3*randn(20,1), 100*ones(29,1); ...
|
||||
|
||||
'Teachers', {'Debroy'; 'Yecko'}, {'Fontaine'}, {'Smyth'}, {'Dell'}
|
||||
};
|
||||
|
||||
%% Difference between {} and ()
|
||||
% As we've seen before, () performs matrix indexing. A cell array behaves
|
||||
% as a matrix of cell-arrays; indexing it using () will also produce a cell
|
||||
% array.
|
||||
%
|
||||
% {} performs matrix indexing, and also extracts the values of the cell(s).
|
||||
% Usually, this is what you want when immediately indexing a cell array.
|
||||
%
|
||||
% Confusingly (or not?) you can double-index cell arrays using `{}`, but
|
||||
% you cannot double-index matrices using `()`.
|
||||
courses(1,2);
|
||||
courses{1,2};
|
||||
courses{2,2}(3:5,1);
|
||||
courses(3,2);
|
||||
courses{3,2};
|
||||
courses{3,2}{1}(1);
|
||||
|
||||
%% Objects and Classes
|
||||
% MATLAB supports OOP programming. We saw a basic class definition last
|
||||
% class. Classes are also used in all of MATLAB's toolboxes (e.g., ML,
|
||||
% signal processing).
|
||||
x = randn(10000, 1);
|
||||
h = histogram(x); % h is a histogram class
|
||||
|
||||
properties(h);
|
||||
methods(h);
|
||||
|
||||
% Check out the documentation for more info on the histogram class and
|
||||
% other classes.
|
||||
|
||||
%% Structs and Objects
|
||||
% MATLAB also supports `struct`s. Structs are like objects in that they
|
||||
% can combine multiple values under the same variable (composite data),
|
||||
% and use the same dot-indexing syntax. However, they are not defined by
|
||||
% and constructed using a class, but rather using the `struct` constructor.
|
||||
|
||||
sfield1 = 'a'; svalue1 = 5;
|
||||
sfield2 = 'b'; svalue2 = [3 6];
|
||||
sfield3 = 'c'; svalue3 = "Hello World";
|
||||
sfield4 = 'd'; svalue4 = {'cell array'};
|
||||
|
||||
s = struct( ...
|
||||
sfield1, svalue1, ...
|
||||
sfield2, svalue2, ...
|
||||
sfield3, svalue3, ...
|
||||
sfield4, svalue4 ...
|
||||
);
|
||||
|
||||
s.a;
|
||||
s.b(2);
|
||||
|
||||
%% Struct with cell array fields
|
||||
% Cell arrays as struct fields may be used to generate an array of structs.
|
||||
tfield1 = 'f1'; tvalue1 = zeros(1,10);
|
||||
tfield2 = 'f2'; tvalue2 = {'a', 'b'};
|
||||
tfield3 = 'f3'; tvalue3 = {pi, pi.^2};
|
||||
tfield4 = 'f4'; tvalue4 = {'fourth'};
|
||||
t = struct( ...
|
||||
tfield1, tvalue1, ...
|
||||
tfield2, tvalue2, ...
|
||||
tfield3, tvalue3, ...
|
||||
tfield4, tvalue4 ...
|
||||
);
|
||||
|
||||
t(1);
|
||||
t(2);
|
||||
|
||||
%% Adding fields to a struct
|
||||
% Struct fields are not fixed; you can add fields to it after it is
|
||||
% constructed using dot-indexing.
|
||||
u = struct;
|
||||
u.a = [1 3 5 7];
|
||||
u.b = ["Hello","World!"];
|
||||
u;
|
19
lessons/lesson04/distance.m
Normal file
19
lessons/lesson04/distance.m
Normal file
@ -0,0 +1,19 @@
|
||||
% In a file like this one (which only defines normal functions, and in which
|
||||
% the first function is hononymous with the filename), the first function is a
|
||||
% public function, and all other functions are local helper functions.
|
||||
%
|
||||
% Note that you DO NOT want to put clc; clear; close all; at the top of a file
|
||||
% like this; it only makes sense to do this at the top of script files when you
|
||||
% want to clean your workspace!
|
||||
|
||||
% Calculate Euclidean distance
|
||||
% A public function, callable by other files and from the Command Window if
|
||||
% this is in the MATLAB path.
|
||||
function d = distance(x, y)
|
||||
d = sqrt(sq(x) + sq(y));
|
||||
end
|
||||
|
||||
% A local helper function. Only accessible within this file.
|
||||
function x = sq(x)
|
||||
x = x * x;
|
||||
end
|
34
lessons/lesson04/for_loops.m
Normal file
34
lessons/lesson04/for_loops.m
Normal file
@ -0,0 +1,34 @@
|
||||
%% Lesson 2b: Control Sequence - For loops
|
||||
% Similar to other languages, MATLAB have if, while and for control
|
||||
% sequences. For loops are one of the commonly used control sequences in
|
||||
% MATLAB. We will continue the discussion of if and while in the next
|
||||
% lesson.
|
||||
|
||||
clear;
|
||||
n = 1e7;
|
||||
% D = zeros(1,n); % This is called pre-allocation
|
||||
% try uncommenting this line to see the
|
||||
% difference. Memory allocations are slow!
|
||||
|
||||
% Calculate fib(n). Hard to do vectorized unless we know Binet's formula.
|
||||
% (Note that this will quickly overflow, but that's not our objective
|
||||
% here.)
|
||||
D(1) = 1;
|
||||
D(2) = 2;
|
||||
tic % start timer
|
||||
for i = 3:n
|
||||
D(i) = D(i-1) + D(i-2);
|
||||
end
|
||||
toc % print elapsed time since last tic
|
||||
|
||||
%% Be careful!
|
||||
% For loops are considered the more inefficient type of operation in
|
||||
% MATLAB. Performing operations on vectors is faster because your hardware
|
||||
% can optimize vectorized instructions, and because the "for" construct
|
||||
% exists in MATLAB's runtime, which is essentially a scripting language and
|
||||
% thus is slow.
|
||||
%
|
||||
% However, things are changing, and things like parfor (parallel-for) and
|
||||
% advanced JIT (just-in-time) compilation are improving the performance of
|
||||
% loops. But vectorized operations are almost always faster and should
|
||||
% be used where possible.
|
177
lessons/lesson04/funnnnnn.m
Normal file
177
lessons/lesson04/funnnnnn.m
Normal file
@ -0,0 +1,177 @@
|
||||
%% Lesson 4a: Functions
|
||||
%
|
||||
% Objectives:
|
||||
% - Explore MATLAB's function-calling syntax and semantics.
|
||||
% - Explore anonymous functions.
|
||||
% - Explore local functions.
|
||||
% - Explore regular functions.
|
||||
clear; clc; close all;
|
||||
|
||||
%% Functions
|
||||
% Functions in any programming language are the means of abstraction. In
|
||||
% functional programming, they are a fundamental structure with the power to
|
||||
% build any complex form. In imperative and scientific computing, functions are
|
||||
% useful to prevent code duplication and improve maintainability.
|
||||
%
|
||||
% There are a few varieties of MATLAB, each of which has very different syntax
|
||||
% and semantics, so buckle up!
|
||||
%
|
||||
% (Insider information from MathWorks: MATLAB is working on improving the
|
||||
% support/accesibility of functional programming! So there may be some
|
||||
% improvements in the near future!)
|
||||
%
|
||||
% Note: this lecture was heavily modified by a functional-programming fan!
|
||||
|
||||
%% Using functions
|
||||
% All functions are called (invoked) in the same manner: by using the
|
||||
% function's name followed by the list of parameters with which to invoke the
|
||||
% function.
|
||||
z = zeros(1, 3);
|
||||
mean([1, 2, 3, 4, 5]);
|
||||
|
||||
% Functions may have optional parameters, and they may behave differently when
|
||||
% called with different inputs (polymorphism) or when different numbers of
|
||||
% outputs are expected. They may also return zero, one, or multiple values.
|
||||
size1 = size(z);
|
||||
size2 = size(z, 2); % optional second parameter
|
||||
|
||||
hist(1:10); % displays a historgram
|
||||
a = hist(1:10); % stores a histogram into the variable a, and does
|
||||
% not display a histogram
|
||||
|
||||
[r1, r2] = HelloWorld("Jon", "Lam"); % Function returning multiple
|
||||
% values (HelloWorld defined later in
|
||||
% file)
|
||||
|
||||
% There is a second way that you've seen to call functions, called "command
|
||||
% syntax." These are translatable to the regular function syntax. Any textual
|
||||
% arguments in this syntax will be interpreted as strings, which is similar to
|
||||
% UNIX sh commands arguments (hence "command" syntax).
|
||||
clear a b; % clear("a", "b")
|
||||
close all; % close("all")
|
||||
mkdir test; % mkdir("test")
|
||||
rmdir test; % rmdir("test")
|
||||
|
||||
% Note that if a function takes no arguments, the parentheses may also be
|
||||
% omitted. (This is not true for anonymous functions, as we will see.)
|
||||
clc; % clc()
|
||||
figure; % figure()
|
||||
|
||||
%% Anonymous functions
|
||||
% Anonymous functions are defined with the following syntax:
|
||||
%
|
||||
% @(arg1, arg2, ...) fun_body
|
||||
%
|
||||
% These allow us to conveniently define functions inline, and perform some
|
||||
% functional programming capabilities. In other programming languages, they may
|
||||
% be known as "arrow functions" or "lambda functions."
|
||||
cube = @(x) x.^3;
|
||||
parabaloid = @(x, y) x.^2 + y.^2;
|
||||
|
||||
% Call these functions like any other function.
|
||||
cube(3);
|
||||
parabaloid(3, 4);
|
||||
|
||||
% As the name suggests, anonymous functions don't have to be assigned names; by
|
||||
% themselves, they are "function values" or "function expressions" and can be
|
||||
% handled like any other expression. (I.e., "first-class" functions). Usually,
|
||||
% we assign it to a variable to name it, just as we do for most useful
|
||||
% expressions.
|
||||
@(x) x.^3;
|
||||
cube_fnval = ans;
|
||||
|
||||
% Anonymous functions can capture variables from the surrounding scope. They
|
||||
% may exist anywhere an expression may exist (e.g., within the body of another
|
||||
% function).
|
||||
outside_variable = 3;
|
||||
capture_fn = @() outside_variable;
|
||||
outside_variable = 4;
|
||||
|
||||
capture_fn; % What will this return?
|
||||
capture_fn(); % What will this return?
|
||||
|
||||
% Lexical scoping and closures apply! This allows for some degree of functional
|
||||
% programming (e.g., function currying).
|
||||
curried_sum = @(x) @(y) x + y;
|
||||
add_two = curried_sum(2);
|
||||
add_two(5); % The binding x <- 2 is captured in
|
||||
% add_two's lexical closure
|
||||
|
||||
% add_two(2)(5) % Can't do this due to MATLAB's syntax,
|
||||
% just like how you can't double-index
|
||||
% an expression
|
||||
|
||||
%% Example: Higher-order functions
|
||||
% An example of passing functions around like any other variable. (Functions
|
||||
% that accept other functions as parameters or return a function are called
|
||||
% "higher-order functions.")
|
||||
%
|
||||
% In this example, compose is the function composition operator. compose(f,g)
|
||||
% = (f o g). It is a HOF because it takes two functions as parameters, and it
|
||||
% returns a function.
|
||||
compose = @(f, g) @(x) f(g(x));
|
||||
add_three = @(x) x + 3;
|
||||
times_four = @(x) x * 4;
|
||||
x_times_four_plus_three = compose(add_three, times_four);
|
||||
|
||||
x = 0:10;
|
||||
y = x_times_four_plus_three(x);
|
||||
plot(x, y);
|
||||
grid on;
|
||||
|
||||
%% Normal Functions
|
||||
% "Normal functions" (so-called because they were the first type of function in
|
||||
% MATLAB) are defined using the syntax shown below, and are invoked in the same
|
||||
% way as anonymous functions.
|
||||
%
|
||||
% Note that normal functions cannot be passed around as variables, and this
|
||||
% makes a functional-programming style impossible using normal functions.
|
||||
%
|
||||
% Unlike anonymous functions, normal functions may include multiple statements,
|
||||
% may return multiple values, are invoked if appearing in an expression without
|
||||
% parentheses (unless you use a function handle), and do not capture variables
|
||||
% from the surrounding scope/workspace.
|
||||
%
|
||||
% There are two types of normal functions: "public" normal functions, which
|
||||
% must be placed at the beginning of a *.m file with the same name as the
|
||||
% function, or local/private normal functions, which may appear at the end of a
|
||||
% *.m file (after anything that is not a function). Both types of normal
|
||||
% functions must appear after any statements in the file; in other words, a
|
||||
% file defining a non-local function can only contain a list of function
|
||||
% definitions, the first of is public and the rest of which are private. As the
|
||||
% name suggests, local functions are only in scope in the file in which they
|
||||
% are defined, whereas public functions may be accessible if they are on the
|
||||
% MATLAB path.
|
||||
%
|
||||
% You don't need to understand all this right now; this brief explanation and
|
||||
% the MATLAB documentation can serve as a reference for your future MATLAB
|
||||
% endeavors.
|
||||
|
||||
%% The MATLAB Path
|
||||
% In order to call a public function defined in another file, the function file
|
||||
% must be in the current folder or on the MATLAB path.
|
||||
matlabpath; % Print out MATLAB path
|
||||
|
||||
%% Invoking regular functions
|
||||
% Note that this section is before the local function definition because the
|
||||
% local function must be defined after all statements in the script.
|
||||
%
|
||||
% eye() is a builtin function. Here we call it with no arguments, so the first
|
||||
% argument's value defaults to 1. distance() is a public function defined in
|
||||
% the file distance.m HelloWorld() is a local function defined below
|
||||
eye;
|
||||
distance(3, 4);
|
||||
HelloWorld("Jon", "Lam"); % Invoking HelloWorld and ignoring outputs
|
||||
|
||||
%% Defining a local function
|
||||
function [res1, res2] = HelloWorld(name1, name2)
|
||||
fprintf("Hello, world! %s %s\n", name1, name2);
|
||||
res1 = 3;
|
||||
res2 = [5 6];
|
||||
end
|
||||
|
||||
%% Other fun stuff:
|
||||
% Function handles
|
||||
% `feval` on function handles and strings
|
||||
% Double-indexing using functions
|
||||
% Viewing source code using `edit`
|
572
lessons/lesson04/octave-log.txt
Normal file
572
lessons/lesson04/octave-log.txt
Normal file
@ -0,0 +1,572 @@
|
||||
octave:2> z = zeros(3)
|
||||
z =
|
||||
|
||||
0 0 0
|
||||
0 0 0
|
||||
0 0 0
|
||||
|
||||
octave:3> mean(1:5)
|
||||
ans = 3
|
||||
octave:4> zeros(3)
|
||||
ans =
|
||||
|
||||
0 0 0
|
||||
0 0 0
|
||||
0 0 0
|
||||
|
||||
octave:5> zeros(3, 1)
|
||||
ans =
|
||||
|
||||
0
|
||||
0
|
||||
0
|
||||
|
||||
octave:6> help sum
|
||||
'sum' is a built-in function from the file libinterp/corefcn/data.cc
|
||||
|
||||
-- sum (X)
|
||||
-- sum (X, DIM)
|
||||
-- sum (..., "native")
|
||||
-- sum (..., "double")
|
||||
-- sum (..., "extra")
|
||||
Sum of elements along dimension DIM.
|
||||
|
||||
If DIM is omitted, it defaults to the first non-singleton
|
||||
dimension.
|
||||
|
||||
The optional "type" input determines the class of the variable used
|
||||
for calculations. By default, operations on floating point inputs
|
||||
(double or single) are performed in their native data type, while
|
||||
operations on integer, logical, and character data types are
|
||||
performed using doubles. If the argument "native" is given, then
|
||||
the operation is performed in the same type as the original
|
||||
argument.
|
||||
|
||||
For example:
|
||||
|
||||
sum ([true, true])
|
||||
=> 2
|
||||
sum ([true, true], "native")
|
||||
=> true
|
||||
|
||||
If "double" is given the sum is performed in double precision even
|
||||
for single precision inputs.
|
||||
|
||||
For double precision inputs, the "extra" option will use a more
|
||||
accurate algorithm than straightforward summation. For single
|
||||
precision inputs, "extra" is the same as "double". For all other
|
||||
data type "extra" has no effect.
|
||||
|
||||
See also: cumsum, sumsq, prod.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:7> sum(eye(3))
|
||||
ans =
|
||||
|
||||
1 1 1
|
||||
|
||||
octave:8> eye(3)
|
||||
ans =
|
||||
|
||||
Diagonal Matrix
|
||||
|
||||
1 0 0
|
||||
0 1 0
|
||||
0 0 1
|
||||
|
||||
octave:9> sum(eye(3))
|
||||
ans =
|
||||
|
||||
1 1 1
|
||||
|
||||
octave:10> sum(eye(3), 2)
|
||||
ans =
|
||||
|
||||
1
|
||||
1
|
||||
1
|
||||
|
||||
octave:11> sum(eye(3), 3)
|
||||
ans =
|
||||
|
||||
1 0 0
|
||||
0 1 0
|
||||
0 0 1
|
||||
|
||||
octave:12> hold on
|
||||
octave:13> close all
|
||||
octave:14> close("all")
|
||||
octave:15> hold("on")
|
||||
octave:16> close("all")
|
||||
octave:17> figure
|
||||
octave:18> figure()
|
||||
octave:19> close("all")
|
||||
octave:20> hist(1:10)
|
||||
octave:21> close all
|
||||
octave:22> a = hist(1:10)
|
||||
a =
|
||||
|
||||
1 1 1 1 1 1 1 1 1 1
|
||||
|
||||
octave:23> help find
|
||||
'find' is a built-in function from the file libinterp/corefcn/find.cc
|
||||
|
||||
-- IDX = find (X)
|
||||
-- IDX = find (X, N)
|
||||
-- IDX = find (X, N, DIRECTION)
|
||||
-- [i, j] = find (...)
|
||||
-- [i, j, v] = find (...)
|
||||
Return a vector of indices of nonzero elements of a matrix, as a
|
||||
row if X is a row vector or as a column otherwise.
|
||||
|
||||
To obtain a single index for each matrix element, Octave pretends
|
||||
that the columns of a matrix form one long vector (like Fortran
|
||||
arrays are stored). For example:
|
||||
|
||||
find (eye (2))
|
||||
=> [ 1; 4 ]
|
||||
|
||||
If two inputs are given, N indicates the maximum number of elements
|
||||
to find from the beginning of the matrix or vector.
|
||||
|
||||
If three inputs are given, DIRECTION should be one of "first" or
|
||||
"last", requesting only the first or last N indices, respectively.
|
||||
However, the indices are always returned in ascending order.
|
||||
|
||||
If two outputs are requested, 'find' returns the row and column
|
||||
indices of nonzero elements of a matrix. For example:
|
||||
|
||||
[i, j] = find (2 * eye (2))
|
||||
=> i = [ 1; 2 ]
|
||||
=> j = [ 1; 2 ]
|
||||
|
||||
If three outputs are requested, 'find' also returns a vector
|
||||
containing the nonzero values. For example:
|
||||
|
||||
[i, j, v] = find (3 * eye (2))
|
||||
=> i = [ 1; 2 ]
|
||||
=> j = [ 1; 2 ]
|
||||
=> v = [ 3; 3 ]
|
||||
|
||||
If X is a multi-dimensional array of size m x n x p x ..., J
|
||||
contains the column locations as if X was flattened into a
|
||||
two-dimensional matrix of size m x (n + p + ...).
|
||||
|
||||
Note that this function is particularly useful for sparse matrices,
|
||||
as it extracts the nonzero elements as vectors, which can then be
|
||||
used to create the original matrix. For example:
|
||||
|
||||
sz = size (a);
|
||||
[i, j, v] = find (a);
|
||||
b = sparse (i, j, v, sz(1), sz(2));
|
||||
|
||||
See also: nonzeros.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:24> cube = @(x) x.^3;
|
||||
octave:25> cube
|
||||
cube =
|
||||
|
||||
@(x) x .^ 3
|
||||
|
||||
octave:26> cube(3)
|
||||
ans = 27
|
||||
octave:27> paraboloid = @(x, y) x.^2 + y.^2;
|
||||
octave:28> paraboloid(3, 4)
|
||||
ans = 25
|
||||
octave:29> @(x) x.^3
|
||||
ans =
|
||||
octave:35> a = 9
|
||||
a = 9
|
||||
octave:36> capture = @() a;
|
||||
octave:37> capture
|
||||
capture =
|
||||
|
||||
@() a
|
||||
|
||||
octave:38> capture()
|
||||
ans = 9
|
||||
octave:39> capture = @() 9
|
||||
capture =
|
||||
|
||||
@() 9
|
||||
|
||||
octave:40> capture()
|
||||
ans = 9
|
||||
octave:41> capture = @() a;
|
||||
octave:42> capture()
|
||||
ans = 9
|
||||
octave:43> a = 3
|
||||
a = 3
|
||||
octave:44> capture()
|
||||
ans = 9
|
||||
octave:45> n = 4
|
||||
n = 4
|
||||
octave:46> n = 2
|
||||
n = 2
|
||||
octave:47> pown = @(x) x.^n
|
||||
pown =
|
||||
|
||||
@(x) x .^ n
|
||||
|
||||
octave:48> pown(3)
|
||||
ans = 9
|
||||
octave:49> n = 4
|
||||
n = 4
|
||||
octave:50> pown(3)
|
||||
ans = 9
|
||||
octave:51>
|
||||
^[[200~compose = @(f, g) @(x) f(g(x));^[[201~octave:51>
|
||||
octave:51>
|
||||
octave:51>
|
||||
octave:51>
|
||||
octave:51> compose = @(f, g) @(x) f(g(x));
|
||||
octave:52>
|
||||
octave:52>
|
||||
octave:52>
|
||||
octave:52>
|
||||
octave:52>
|
||||
octave:52> add_three = @(x) x + 3;
|
||||
times_four = @(x) x * 4;
|
||||
x_times_four_plus_three = compose(add_three, times_four);
|
||||
octave:55> x_times_four_plus_three
|
||||
x_times_four_plus_three =
|
||||
|
||||
@(x) f (g (x))
|
||||
|
||||
octave:56> function y = times_four_plus_three(x)
|
||||
> x2 = x.*4;
|
||||
> y = x2 + 3;
|
||||
> end
|
||||
octave:57> times_four_plus_three(1)
|
||||
ans = 7
|
||||
octave:58> answer = times_four_plus_three(1)
|
||||
answer = 7
|
||||
octave:59> function [y, z] = mystery_math(p, q)
|
||||
> y = p + q;
|
||||
> z = p - q;
|
||||
> disp('did the math!');
|
||||
> end
|
||||
octave:60> mystery_math(3, 4)
|
||||
did the math!
|
||||
ans = 7
|
||||
octave:61> [val1, val2] = mystery_math(3, 4)
|
||||
did the math!
|
||||
val1 = 7
|
||||
val2 = -1
|
||||
octave:62>
|
||||
|
||||
[cat@lazarus:~/classes/ece210-materials/2024-van-west/lessons/lesson04]
|
||||
$ ls
|
||||
BasicClass.m datatypes.m for_loops.m lecture.txt
|
||||
controlflow.m distance.m funnnnnn.m
|
||||
[cat@lazarus:~/classes/ece210-materials/2024-van-west/lessons/lesson04]
|
||||
$ cat distance.m
|
||||
% In a file like this one (which only defines normal functions, and in which
|
||||
% the first function is hononymous with the filename), the first function is a
|
||||
% public function, and all other functions are local helper functions.
|
||||
%
|
||||
% Note that you DO NOT want to put clc; clear; close all; at the top of a file
|
||||
% like this; it only makes sense to do this at the top of script files when you
|
||||
% want to clean your workspace!
|
||||
|
||||
% Calculate Euclidean distance
|
||||
% A public function, callable by other files and from the Command Window if
|
||||
% this is in the MATLAB path.
|
||||
function d = distance(x, y)
|
||||
d = sqrt(sq(x) + sq(y));
|
||||
end
|
||||
|
||||
% A local helper function. Only accessible within this file.
|
||||
function x = sq(x)
|
||||
x = x * x;
|
||||
end
|
||||
[cat@lazarus:~/classes/ece210-materials/2024-van-west/lessons/lesson04]
|
||||
$ octave
|
||||
GNU Octave, version 7.3.0
|
||||
Copyright (C) 1993-2022 The Octave Project Developers.
|
||||
This is free software; see the source code for copying conditions.
|
||||
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty'.
|
||||
|
||||
Octave was configured for "x86_64-pc-linux-gnu".
|
||||
|
||||
Additional information about Octave is available at https://www.octave.org.
|
||||
|
||||
Please contribute if you find this software useful.
|
||||
For more information, visit https://www.octave.org/get-involved.html
|
||||
|
||||
Read https://www.octave.org/bugs.html to learn how to submit bug reports.
|
||||
For information about changes from previous versions, type 'news'.
|
||||
|
||||
octave:1> who
|
||||
octave:2> distance(3, 4)
|
||||
ans = 5
|
||||
octave:3> path
|
||||
|
||||
Octave's search path contains the following directories:
|
||||
|
||||
.
|
||||
/usr/lib/x86_64-linux-gnu/octave/7.3.0/site/oct/x86_64-pc-linux-gnu
|
||||
/usr/lib/x86_64-linux-gnu/octave/site/oct/api-v57/x86_64-pc-linux-gnu
|
||||
/usr/lib/x86_64-linux-gnu/octave/site/oct/x86_64-pc-linux-gnu
|
||||
/usr/share/octave/7.3.0/site/m
|
||||
/usr/share/octave/site/api-v57/m
|
||||
/usr/share/octave/site/m
|
||||
/usr/share/octave/site/m/startup
|
||||
/usr/lib/x86_64-linux-gnu/octave/7.3.0/oct/x86_64-pc-linux-gnu
|
||||
/usr/share/octave/7.3.0/m
|
||||
/usr/share/octave/7.3.0/m/audio
|
||||
/usr/share/octave/7.3.0/m/deprecated
|
||||
/usr/share/octave/7.3.0/m/elfun
|
||||
/usr/share/octave/7.3.0/m/general
|
||||
/usr/share/octave/7.3.0/m/geometry
|
||||
/usr/share/octave/7.3.0/m/gui
|
||||
/usr/share/octave/7.3.0/m/help
|
||||
/usr/share/octave/7.3.0/m/image
|
||||
/usr/share/octave/7.3.0/m/io
|
||||
/usr/share/octave/7.3.0/m/java
|
||||
/usr/share/octave/7.3.0/m/legacy
|
||||
/usr/share/octave/7.3.0/m/linear-algebra
|
||||
/usr/share/octave/7.3.0/m/miscellaneous
|
||||
/usr/share/octave/7.3.0/m/ode
|
||||
/usr/share/octave/7.3.0/m/optimization
|
||||
/usr/share/octave/7.3.0/m/path
|
||||
/usr/share/octave/7.3.0/m/pkg
|
||||
/usr/share/octave/7.3.0/m/plot
|
||||
/usr/share/octave/7.3.0/m/plot/appearance
|
||||
/usr/share/octave/7.3.0/m/plot/draw
|
||||
/usr/share/octave/7.3.0/m/plot/util
|
||||
/usr/share/octave/7.3.0/m/polynomial
|
||||
/usr/share/octave/7.3.0/m/prefs
|
||||
/usr/share/octave/7.3.0/m/profiler
|
||||
/usr/share/octave/7.3.0/m/set
|
||||
/usr/share/octave/7.3.0/m/signal
|
||||
/usr/share/octave/7.3.0/m/sparse
|
||||
/usr/share/octave/7.3.0/m/specfun
|
||||
/usr/share/octave/7.3.0/m/special-matrix
|
||||
/usr/share/octave/7.3.0/m/startup
|
||||
/usr/share/octave/7.3.0/m/statistics
|
||||
/usr/share/octave/7.3.0/m/strings
|
||||
/usr/share/octave/7.3.0/m/testfun
|
||||
/usr/share/octave/7.3.0/m/time
|
||||
/usr/share/octave/7.3.0/m/web
|
||||
/usr/share/octave/7.3.0/data
|
||||
|
||||
octave:4> power_to_dB = @(p) 10*log10(p);
|
||||
octave:5> dB_to_power = @(db) 10.^(db./10);
|
||||
octave:6> power_to_dB(10)
|
||||
ans = 10
|
||||
octave:7> power_to_dB(1000)
|
||||
ans = 30
|
||||
octave:8> power_to_dB(100)
|
||||
ans = 20
|
||||
octave:9> dB_to_power(10)
|
||||
ans = 10
|
||||
octave:10> dB_to_power(-10)
|
||||
ans = 0.1000
|
||||
octave:11> for v = [1 2 5 7]
|
||||
> v
|
||||
> end
|
||||
v = 1
|
||||
v = 2
|
||||
v = 5
|
||||
v = 7
|
||||
octave:12> for i = 1:10
|
||||
> i + 3
|
||||
> end
|
||||
ans = 4
|
||||
ans = 5
|
||||
ans = 6
|
||||
ans = 7
|
||||
ans = 8
|
||||
ans = 9
|
||||
ans = 10
|
||||
ans = 11
|
||||
ans = 12
|
||||
ans = 13
|
||||
octave:13> total = 0
|
||||
total = 0
|
||||
octave:14> for i = 1:10
|
||||
> total = total + i
|
||||
> end
|
||||
total = 1
|
||||
total = 3
|
||||
total = 6
|
||||
total = 10
|
||||
total = 15
|
||||
total = 21
|
||||
total = 28
|
||||
total = 36
|
||||
total = 45
|
||||
total = 55
|
||||
octave:15> sum(1:10)
|
||||
ans = 55
|
||||
octave:16> 1 < 2
|
||||
ans = 1
|
||||
octave:17> who
|
||||
Variables visible from the current scope:
|
||||
|
||||
ans dB_to_power i power_to_dB total v
|
||||
|
||||
octave:18> whos
|
||||
Variables visible from the current scope:
|
||||
|
||||
variables in scope: top scope
|
||||
|
||||
Attr Name Size Bytes Class
|
||||
==== ==== ==== ===== =====
|
||||
ans 1x1 1 logical
|
||||
dB_to_power 1x1 0 function_handle
|
||||
i 1x1 8 double
|
||||
power_to_dB 1x1 0 function_handle
|
||||
total 1x1 8 double
|
||||
v 1x1 8 double
|
||||
|
||||
Total is 6 elements using 25 bytes
|
||||
|
||||
octave:19> if 1 < 2
|
||||
> disp('math still works today');
|
||||
> else
|
||||
> disp('oh no');
|
||||
> end
|
||||
math still works today
|
||||
octave:20> i = 0
|
||||
i = 0
|
||||
octave:21> while i < 10
|
||||
> i = i + 1
|
||||
> end
|
||||
i = 1
|
||||
i = 2
|
||||
i = 3
|
||||
i = 4
|
||||
i = 5
|
||||
i = 6
|
||||
i = 7
|
||||
i = 8
|
||||
i = 9
|
||||
i = 10
|
||||
octave:22> try
|
||||
> a = [1 2; 3 4];
|
||||
> b = [1 2 3 4];
|
||||
> c = a*b;
|
||||
> catch err
|
||||
> disp('yo! don't do that!')
|
||||
error: parse error:
|
||||
|
||||
syntax error
|
||||
|
||||
>>> disp('yo! don't do that!')
|
||||
^
|
||||
octave:22> try
|
||||
> a = [1 2; 3 4];
|
||||
> b = [1 2 3 4];
|
||||
> c = a*b;
|
||||
> catch err
|
||||
> disp('yo! do not do that!')
|
||||
> end
|
||||
yo! do not do that!
|
||||
octave:23> a
|
||||
a =
|
||||
|
||||
1 2
|
||||
3 4
|
||||
|
||||
octave:24> b
|
||||
b =
|
||||
|
||||
1 2 3 4
|
||||
|
||||
octave:25> a*b
|
||||
error: operator *: nonconformant arguments (op1 is 2x2, op2 is 1x4)
|
||||
octave:26> clear
|
||||
octave:27> whos
|
||||
octave:28> a = 10
|
||||
a = 10
|
||||
octave:29> class(a)
|
||||
ans = double
|
||||
octave:30> b = int8(a)
|
||||
b = 10
|
||||
octave:31> class(b)
|
||||
ans = int8
|
||||
octave:32> b + .5
|
||||
ans = 11
|
||||
octave:33> whos
|
||||
Variables visible from the current scope:
|
||||
|
||||
variables in scope: top scope
|
||||
|
||||
Attr Name Size Bytes Class
|
||||
==== ==== ==== ===== =====
|
||||
a 1x1 8 double
|
||||
ans 1x1 1 int8
|
||||
b 1x1 1 int8
|
||||
|
||||
Total is 3 elements using 10 bytes
|
||||
|
||||
octave:34>
|
||||
octave:34>
|
||||
octave:34>
|
||||
^[[200~imshow(uint8(rand(128, 128, 3)));^[[201~octave:34>
|
||||
octave:34>
|
||||
octave:34> imshow(uint8(rand(128, 128, 3)));
|
||||
octave:35> close all
|
||||
octave:36>
|
||||
^[[200~imshow(double(rand(128, 128, 3)));^[[201~octave:36>
|
||||
octave:36>
|
||||
octave:36>
|
||||
octave:36>
|
||||
octave:36> imshow(double(rand(128, 128, 3)));
|
||||
octave:37> close all
|
||||
octave:38> imshow(uint8(rand(128, 128, 3)));
|
||||
octave:39> close all
|
||||
octave:40> imshow(uint8(rand(128, 128, 3)));
|
||||
octave:40> eps
|
||||
ans = 2.2204e-16
|
||||
octave:41> eps(1)
|
||||
ans = 2.2204e-16
|
||||
octave:42> eps(.001)
|
||||
ans = 2.1684e-19
|
||||
octave:43> eps(10000)
|
||||
ans = 1.8190e-12
|
||||
octave:44> eps(1e100)
|
||||
ans = 1.9427e+84
|
||||
octave:45> 10^(10^10)
|
||||
ans = Inf
|
||||
octave:46> a = 5
|
||||
a = 5
|
||||
octave:47> b = "hello!"
|
||||
b = hello!
|
||||
octave:48> s = struct('a', 5, 'b', "hello!")
|
||||
s =
|
||||
|
||||
scalar structure containing the fields:
|
||||
|
||||
a = 5
|
||||
b = hello!
|
||||
|
||||
octave:49> s
|
||||
s =
|
||||
|
||||
scalar structure containing the fields:
|
||||
|
||||
a = 5
|
||||
b = hello!
|
||||
|
||||
octave:50> s.a
|
||||
ans = 5
|
||||
octave:51> s.b
|
||||
ans = hello!
|
||||
octave:52>
|
127
lessons/lesson05/indexing.m
Normal file
127
lessons/lesson05/indexing.m
Normal file
@ -0,0 +1,127 @@
|
||||
%% Lesson 3b: Advanced Indexing
|
||||
%
|
||||
% Objectives:
|
||||
% - Review basic vector indexing
|
||||
% - Introduce multidimensional indexing and linear indexing
|
||||
% - Introduce logical indexing
|
||||
clear; clc; close all;
|
||||
|
||||
%% Review of basic vector indexing
|
||||
% Indexed expressions can appear on the right-hand side of an assignment or the
|
||||
% left-hand side (rvalues and lvalues in C).
|
||||
x = [2 4 8 16 32 64 128];
|
||||
x(3);
|
||||
x(4:6);
|
||||
x(:);
|
||||
x(end);
|
||||
x(2) = -4;
|
||||
|
||||
%% Vectors indexing vectors
|
||||
% You can use a vector to index another vector. This can be useful if there is
|
||||
% a specific index pattern you want from a vector.
|
||||
|
||||
x([1 3 5 7]); % Returns a vector with the 1st, 3rd, 5th, and 7th
|
||||
% entries of x
|
||||
x(1:2:7); % Same thing uses the colon operator to create the
|
||||
% index vector
|
||||
x([2:4 3:6]);
|
||||
x([1:4]) = 7; % Changes the values from the 1st and 4th entries
|
||||
% of x to 7
|
||||
|
||||
%% Indexing matrices with 2 subscripts
|
||||
% You can index a matrix using two indices, separated by a comma.
|
||||
A = [16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1];
|
||||
|
||||
A(1,1); % Returns entry in first row and first column
|
||||
A(1:3,1:2); % Returns the entries in the first three rows AND
|
||||
% first two columns
|
||||
A(end,:);
|
||||
|
||||
% What if I want to index the (2,1), (3,2), (4,4) entries?
|
||||
|
||||
A([2 3 4],[1 2 4]); % Will this work?
|
||||
|
||||
%% Linear Indexing
|
||||
% Instead you should index linearly! Linear indexing only uses one
|
||||
% subscript
|
||||
|
||||
A(:); % What does this return and in what form and order?
|
||||
|
||||
reshape(A, [], 1); % What about this?
|
||||
|
||||
A(14); % What value does this return?
|
||||
|
||||
|
||||
%% Non-rectangular indices
|
||||
% Now that we know about linear indexing, what values does this return?
|
||||
A([2 7 16]);
|
||||
|
||||
% Luckily enough, MATLAB has a function that would calculate the linear
|
||||
% index for you!
|
||||
ind = sub2ind(size(A),[2 3 4],[1 2 4]);
|
||||
A(ind);
|
||||
|
||||
% Note that sub2ind follows a common naming convention in MATLAB for converting
|
||||
% one type to another. For example, there is also ind2sub, str2int, int2str,
|
||||
% zp2tf, tf2zp, etc.
|
||||
|
||||
%% Logical Indexing
|
||||
% Logical indexing allows us to use boolean logic to build more complex
|
||||
% indices. This is based off of boolean logic: we have two boolean values TRUE
|
||||
% (represented by 1) and FALSE (represented by 0), and the boolean operators
|
||||
% AND, OR, and NOT.
|
||||
%
|
||||
% Logical scalar and matrix literals can be constructed from double and matrix
|
||||
% literals using the logical() function, or they may be generated from other
|
||||
% operations. (Note that logical and double values have different data types.)
|
||||
|
||||
B = eye(4); % Regular identity matrix
|
||||
C = logical([1 1 1 1; 1 0 0 0; 1 0 0 0; 1 0 0 0]); % Logical entries
|
||||
islogical(B);
|
||||
|
||||
islogical(C);
|
||||
|
||||
%% Some logical operators
|
||||
B = logical(B); % Converts B into a logical array
|
||||
|
||||
B & C; % and(B,C) is equivalent to B&C
|
||||
B | C; % or(B,C) is equivalent to B|C
|
||||
~(B & C); % not(and(B,C)) is equivalent to ~(B&C)
|
||||
not(B & C); % you can use both representations intermittenly
|
||||
|
||||
%% Functions that generate logical values
|
||||
% The following functions are analogous to the ones() and zeros() functions
|
||||
% for double matrices.
|
||||
true(2,5); % creates a 2x5 logical matrix of trues(1s)
|
||||
false(2,5);
|
||||
|
||||
%% Generating logical values from predicates
|
||||
% Relational (comparison) operators generate logical values. Relational
|
||||
% operators on matrices will perform the operation element-wise and return a
|
||||
% logical matrix.
|
||||
%
|
||||
% This is not anything really special, since we've seen element-wise operations
|
||||
% on matrices. The only change is that instead of functions that return
|
||||
% numbers, we have functions that return booleans (predicates).
|
||||
D = [1 2 3; 2 3 4; 3 4 5];
|
||||
E = [1 5 6; 9 2 8; 7 3 4];
|
||||
|
||||
D == 3; % Returns true every place there is a 3.
|
||||
|
||||
D < E; % Elementwise comparison
|
||||
D < 3; % Elementwise comparison against a scalar.
|
||||
% (Note: this is broadcasting!)
|
||||
D < [7; 4; 1]; % Another example of broadcasting: comparison
|
||||
% of each row against a scalar.
|
||||
|
||||
%% Logical indexing
|
||||
% Logical indexing uses a logical value as the index. Elements in the indexed
|
||||
% matrix where the logical index is TRUE will be returned, and FALSE values
|
||||
% will be disregarded. The returned matrix will always be a column vector,
|
||||
% similar to indexing with (:).
|
||||
A(A > 12); % returns entries of A which are greater
|
||||
% than 12 in a column vector
|
||||
|
||||
% To return the linear indices of the TRUE values in a logical matrix.
|
||||
find(A > 12);
|
||||
A(find(A > 12)); % Gives the same results as above
|
44
lessons/lesson05/meshgrid_broadcasting.m
Normal file
44
lessons/lesson05/meshgrid_broadcasting.m
Normal file
@ -0,0 +1,44 @@
|
||||
%% Lesson 3a: Meshes & Broadcasting
|
||||
|
||||
%% Meshgrid
|
||||
% Meshgrid is quite hard to understand. Think of it as a way to replicate
|
||||
% arrays, like the following example:
|
||||
a = 1:3;
|
||||
b = 1:5;
|
||||
[A,B] = meshgrid(a,b);
|
||||
|
||||
%% Using meshgrid for functions of multiple variables
|
||||
% You have created two arrays A and B, note that in A, the vector a is copied
|
||||
% row-wise, while the vector b is transposed and copied column-wise. This is
|
||||
% useful, because when you lay one above the other, you essentially create a
|
||||
% CARTESIAN PRODUCT, and it is useful when we need to plot a 3D graph.
|
||||
%
|
||||
% Here is a more complicated example to show you when meshgrid is useful
|
||||
a1 = -2:0.25:2;
|
||||
b1 = a1;
|
||||
[A1,B1] = meshgrid(a1);
|
||||
|
||||
% Here we plot the surface of f(x) = x*exp^(x.^2+y.^2)
|
||||
F = A1.*exp(-A1.^2-B1.^2);
|
||||
surf(A1, B1, F);
|
||||
|
||||
%% Broadcasting: an alternative to meshgrid
|
||||
% Broadcasting, like meshgrid, can be used as a way to write functions of
|
||||
% multiple variables, without generating the intermediate matrices A and B.
|
||||
% The way this works is that operations performed on a set of N orthogonal
|
||||
% vectors will automatically generate an N-dimensional result.
|
||||
%
|
||||
% See the following example, which recreates the above example. Note that b1 is
|
||||
% transposed.
|
||||
F2 = a1.*exp(-a1.^2-(b1.').^2);
|
||||
surf(A1, B1, F2);
|
||||
|
||||
% Check that this matches the previous result.
|
||||
error = rms(F - F2, 'all');
|
||||
|
||||
% Note: broadcasting doesn't generate the domains A1 and B1, so meshgrid() is
|
||||
% more useful when we need to supply the domain to a function like mesh() or
|
||||
% surf(). But when we only need the result, broadcasting is somewhat simpler.
|
||||
%
|
||||
% For homework assignments that require functions of multiple variables, use
|
||||
% whichever method is more intuitive to you.
|
3902
lessons/lesson05/octave-log.txt
Normal file
3902
lessons/lesson05/octave-log.txt
Normal file
File diff suppressed because it is too large
Load Diff
37
lessons/lesson06/analog_freqs.m
Normal file
37
lessons/lesson06/analog_freqs.m
Normal file
@ -0,0 +1,37 @@
|
||||
%% Lesson 6x: the S-plane
|
||||
% If you happen to have an analog filter represented as a ratio of polynomials,
|
||||
% MATLAB can analyze that too! `freqs()` will give you the analog frequency
|
||||
% response evaluated at frequencies in the given vector, interpreted in rad/s.
|
||||
|
||||
%% a simple example
|
||||
% What sort of filter is this?
|
||||
a = [1 0.4 1];
|
||||
b = [0.2 0.3 1];
|
||||
|
||||
w = logspace(-1, 1);
|
||||
H = freqs(b, a, w);
|
||||
|
||||
Hdb = 20*log10(abs(H));
|
||||
Hph = rad2deg(unwrap(angle(H)));
|
||||
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
semilogx(w, Hdb);
|
||||
xlabel("Frequency (rad/s)");
|
||||
ylabel("|H| (dB)");
|
||||
title("Magnitude Response");
|
||||
|
||||
subplot(2, 1, 2);
|
||||
semilogx(w, Hph);
|
||||
xlabel("Frequency (rad/s)");
|
||||
ylabel("Phase (deg)");
|
||||
title("Phase Response");
|
||||
|
||||
%% some notes
|
||||
% `zp2tf` and its associates also work in the analog domain, as they deal
|
||||
% simply with ratios of polynomials. The interpretation of the results will be
|
||||
% different, though, as we're working with the *analog* plane rather than the
|
||||
% digital one. `splane.m` gives an example visualization of the s-plane.
|
||||
[z, p, k] = tf2zp(b, a);
|
||||
figure;
|
||||
splane(z, p);
|
BIN
lessons/lesson06/bw-cat.jpg
Normal file
BIN
lessons/lesson06/bw-cat.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 292 KiB |
84
lessons/lesson06/fft_1d.m
Normal file
84
lessons/lesson06/fft_1d.m
Normal file
@ -0,0 +1,84 @@
|
||||
%% Lesson 7a. The FFT
|
||||
% * Explore how to perform the FFT (DFT) on a 1-D signal
|
||||
% * Learn how to plot the FFT
|
||||
clear; clc; close all;
|
||||
|
||||
%% Load a sample signal
|
||||
load handel; % builtin dataset that loads `y` and `Fs` to your workspace
|
||||
sound(y, Fs);
|
||||
T = 1/Fs;
|
||||
t = 0:T:(length(y)-1)*T;
|
||||
|
||||
%% Loud noise warning!!!
|
||||
Fnoise = 2500;
|
||||
noise = 0.2*sin(2*pi*t*Fnoise).'; % additive "noise" with freq. 2.5kHz
|
||||
y = noise + y;
|
||||
% sound(y, Fs);
|
||||
|
||||
%% Perform the FFT
|
||||
% Recall that the Fast Fourier Transform is a well-known and efficient
|
||||
% implementation of the DFT. The DFT is a Fourier transform on a
|
||||
% N-point fixed-length signal, and produces a N-point frequency spectrum.
|
||||
N = 2^15;
|
||||
S = fft(y, N); % N-point DFT (best to use power of 2)
|
||||
|
||||
% Note the behavior of doing `fft(y, N)` (taken from the documentation):
|
||||
% * If X is a vector and the length of X is less than n, then X is padded
|
||||
% with trailing zeros to length n.
|
||||
% * If X is a vector and the length of X is greater than n, then X is
|
||||
% truncated to length n.
|
||||
% * If X is a matrix, then each column is treated as in the vector case.
|
||||
% * If X is a multidimensional array, then the first array dimension
|
||||
% whose size does not equal 1 is treated as in the vector case.
|
||||
%
|
||||
% This is the time when padding with zeros is acceptable (when performing
|
||||
% a FFT where N > length(y))!
|
||||
|
||||
S = fftshift(abs(S)) / N;
|
||||
% fftshift is necessary since MATLAB returns from DFT the zeroth frequency
|
||||
% at the first index, then the positive frequencies, then the negative
|
||||
% frequencies when what you probably want is the zeroth frequency centered
|
||||
% between the negative and positive frequencies.
|
||||
|
||||
% Get (analog) frequency domain. E.g., if you perform a 128-pt
|
||||
% FFT and sampled at 50kHz, you want to generate a 128-pt frequency range
|
||||
% from -25kHz to 25kHz.
|
||||
F = Fs .* (-N/2:N/2-1) / N;
|
||||
% Each frequency index represents a "bin" of frequencies between -Fs/2 and
|
||||
% Fs/2 (so index i represents i*Fs/N).
|
||||
|
||||
figure;
|
||||
plot(F, S);
|
||||
title 'Fourier Transform of Audio';
|
||||
xlabel 'Frequency (Hz)';
|
||||
ylabel 'Magnitude';
|
||||
|
||||
%% Alternative ways to generate FFT plots:
|
||||
% Slightly more readable version of frequency domain.
|
||||
% Get the digital frequency
|
||||
wd = linspace(-pi, pi, N+1);
|
||||
wd = wd(1:end-1);
|
||||
F2 = wd * Fs / (2 * pi);
|
||||
|
||||
% Equivalent formulation, without going through the digital domain.
|
||||
F3 = linspace(-Fs/2, Fs/2, N+1);
|
||||
F3 = F3(1:end-1);
|
||||
|
||||
% Slightly more readable but less accurate version.
|
||||
F4 = linspace(-Fs/2, Fs/2, N);
|
||||
|
||||
% Some arbitrariness in scaling factor. It's more important that
|
||||
% you use the same scaling when performing FFT as IFFT. See
|
||||
% https://www.mathworks.com/matlabcentral/answers/15770-scaling-the-fft-and-the-ifft#answer_21372
|
||||
% (use the formula Prof. Fontaine wants you to use.)
|
||||
S = fftshift(fft(y, N)) / Fs;
|
||||
|
||||
% This S is complex; you can take either abs() or angle() of it to get
|
||||
% magnitude and phase responses, respectively
|
||||
figure;
|
||||
plot(F2, abs(S));
|
||||
% plot(F3, abs(S));
|
||||
% plot(F4, abs(S));
|
||||
title 'Fourier Transform of Audio';
|
||||
xlabel 'Frequency (Hz)';
|
||||
ylabel 'Magnitude';
|
74
lessons/lesson06/fft_2d.m
Normal file
74
lessons/lesson06/fft_2d.m
Normal file
@ -0,0 +1,74 @@
|
||||
%% Lesson 7b: The FFT -- for images!
|
||||
% * Explore how to perform and plot the FFT of a 2-D signal
|
||||
% * Implement a filter by masking in the frequency domain
|
||||
clc; clear; close all;
|
||||
|
||||
%% Image Example
|
||||
% Low pass filtering
|
||||
% Here we look at images. Think frequencies spatially. High frequency
|
||||
% represents fast change in the image, low frequency represents slight
|
||||
% change. Also frequenies have two dimensions, vertial and horizontal.
|
||||
x = imread('bw-cat.jpg');
|
||||
imshow(x);
|
||||
|
||||
%% 2-D FFT!
|
||||
F = fftshift(fft2(x));
|
||||
|
||||
% Generate a mask (which will be a high-pass filter).
|
||||
% This mask will be 1 for low frequencies, and 0 for high frequencies.
|
||||
% Since the signal and its FFT are 2-D (an image), this will be a
|
||||
% white square centered in the FFT.
|
||||
lpf_mask = zeros(size(F));
|
||||
[H, W] = size(F);
|
||||
lpf_mask(floor(H/2-H/10):floor(H/2+H/10), ...
|
||||
floor(W/2-W/10):floor(W/2+W/10)) = 1;
|
||||
|
||||
% Show the 2-D FFT of the image
|
||||
figure;
|
||||
subplot(121);
|
||||
% Normalize FFT to range [0, 1]
|
||||
imshow(log(abs(F)) / max(log(abs(F(:)))));
|
||||
title 'Fourier transform';
|
||||
|
||||
% Show the LPF mask
|
||||
subplot(122);
|
||||
imshow(lpf_mask);
|
||||
title 'LPF mask';
|
||||
|
||||
%% Perform a LPF by only multiplying by frequency mask
|
||||
im_filtered_fft = lpf_mask .* F; % high frequencies removed
|
||||
f = ifft2(ifftshift(im_filtered_fft)); % ifft2 == ifft 2-D
|
||||
imshow(log(abs(im_filtered_fft)) / max(log(abs(im_filtered_fft(:)))));
|
||||
title 'Filtered FFT';
|
||||
|
||||
%% Altered image vs. original image
|
||||
% Check out how the new image looks a bit blurry. That's because we removed
|
||||
% the high frequency band! All "edges" are less noticable.
|
||||
%
|
||||
% Alternatively, we can perform a high-pass filter. What would this do
|
||||
% to the image? (Hint: see next section.)
|
||||
figure;
|
||||
subplot(121);
|
||||
fnorm = abs(f) / max(abs(f(:)));
|
||||
imshow(fnorm);
|
||||
title 'High frequencies removed';
|
||||
|
||||
subplot(122);
|
||||
xnorm = abs(double(x)) / max(double(x(:)));
|
||||
imshow(xnorm);
|
||||
title 'Original image';
|
||||
|
||||
%% Basic Edge Detection
|
||||
% The difference between the old image and the new image: The edges!
|
||||
sharp_image = abs(fnorm - xnorm);
|
||||
sharp_image_norm = sharp_image / max(sharp_image(:));
|
||||
imshow(sharp_image_norm);
|
||||
|
||||
%% Pinpoints these changes
|
||||
edge_image = zeros(size(sharp_image_norm));
|
||||
edge_image(sharp_image_norm > 3.5*std(sharp_image_norm(:))) = 1;
|
||||
imshow(edge_image);
|
||||
|
||||
% Edge detection algorithms are one application of high-pass filters!
|
||||
% If you want to get started with these, look up Sobel or Laplacian
|
||||
% filters, which are simple convolutions that act as edge detectors/HPFs.
|
BIN
lessons/lesson06/handel.mat
Normal file
BIN
lessons/lesson06/handel.mat
Normal file
Binary file not shown.
BIN
lessons/lesson06/jacob-boot.jpg
Normal file
BIN
lessons/lesson06/jacob-boot.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 236 KiB |
1791
lessons/lesson06/octave-log.txt
Normal file
1791
lessons/lesson06/octave-log.txt
Normal file
File diff suppressed because it is too large
Load Diff
66
lessons/lesson06/polynomials.m
Normal file
66
lessons/lesson06/polynomials.m
Normal file
@ -0,0 +1,66 @@
|
||||
%% Lesson 6a: Polynomials
|
||||
% Before we step into z transform, we should take a look at what functions
|
||||
% are there in MATLAB to evaluate polynomials. There are 4 major functions
|
||||
% to know about -- polyval, root/poly and conv.
|
||||
clc; clear; close all;
|
||||
|
||||
%% polyval
|
||||
% Allows you to evaluate polynomials specified as an array of coefficients.
|
||||
p = [2 -2 0 -3]; % 2x^3 - 2x^2 - 3
|
||||
x = -5:.05:5;
|
||||
a = polyval(p,x);
|
||||
a2 = 2*x.^3 - 2*x.^2 - 3;
|
||||
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
plot(x, a);
|
||||
title('Using polyval');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
plot(x, a2);
|
||||
title('Using algebraic expression');
|
||||
% The graphs are the same!
|
||||
|
||||
%% roots/poly
|
||||
% These two functions are ~inverses! They allow you
|
||||
% to find the roots / coefficients of a vector of numbers
|
||||
r = roots(p);
|
||||
p1 = poly(r);
|
||||
|
||||
% `poly` will always return a monic polynomial (the highest coefficient
|
||||
% will be 1).
|
||||
|
||||
%% residue
|
||||
% Will apply later in the Signals course. Pretty much partial fractions
|
||||
% from Calc I.
|
||||
b = [-4 8];
|
||||
a = [1 6 8];
|
||||
[r, p, k] = residue(b, a);
|
||||
|
||||
[bb, aa] = residue(r, p, k); % can go both ways
|
||||
|
||||
% Note that a, b are row vectors, whereas r, p are column vectors! This
|
||||
% convention is true when we look at tf/zpk forms.
|
||||
|
||||
%% conv
|
||||
% You've probably heard this a lot from Prof. Fontaine.
|
||||
% Convolution in the time domain is multiplication in the frequency domain
|
||||
% (applying a LTI system to a signal is convolution in the time domain).
|
||||
%
|
||||
% Convolution is also used to multiply two polynomials together (if
|
||||
% specified as an array of coefficients.)
|
||||
a = [1 2 -3 4];
|
||||
b = [5 0 3 -2];
|
||||
p2 = conv(a, b); % Use convolution
|
||||
|
||||
x = -5:.05:5;
|
||||
|
||||
% a little experiment
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
plot(x, polyval(a, x) .* polyval(b, x));
|
||||
title('Multiplying polynomial values elementwise');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
plot(x, polyval(p2, x));
|
||||
title('Using conv on convolved polynomials');
|
16
lessons/lesson06/splane.m
Normal file
16
lessons/lesson06/splane.m
Normal file
@ -0,0 +1,16 @@
|
||||
% `splane` creates a pole-zero plot using pole and zero inputs with the
|
||||
% real and imaginary axes superimposed
|
||||
function splane(z,p)
|
||||
x1 = real(z);
|
||||
x2 = real(p);
|
||||
y1 = imag(z);
|
||||
y2 = imag(p);
|
||||
|
||||
plot(x1, y1, 'o', x2, y2, 'x');
|
||||
xlabel('Real Part');
|
||||
ylabel('Imaginary Part');
|
||||
axis('equal');
|
||||
line([0 0], ylim(), 'LineStyle', ':');
|
||||
line(xlim(), [0 0], 'LineStyle', ':');
|
||||
end
|
||||
|
BIN
lessons/lesson06/ztlesson.pdf
Normal file
BIN
lessons/lesson06/ztlesson.pdf
Normal file
Binary file not shown.
237
lessons/lesson06/ztransform.m
Normal file
237
lessons/lesson06/ztransform.m
Normal file
@ -0,0 +1,237 @@
|
||||
%% Lesson 6b: The Z-transform
|
||||
% * Have a overview idea of the z transform
|
||||
% * Know how to plot pole zero plots of the z transform, and what to infer
|
||||
% * Know how to input a signal to the transfer function of z transform
|
||||
clc; clear; close all;
|
||||
|
||||
%% Review
|
||||
% Plot all discrete-time signals with `stem()`! Don't use `plot()`.
|
||||
x = [2 4 7 2 0 8 5];
|
||||
stem(x);
|
||||
title("Discrete Time signal");
|
||||
|
||||
%% Overview of the z transform
|
||||
% The z transform converts a discrete time signal into a complex frequency
|
||||
% domain representation (a series of complex exponentials).
|
||||
% There are two key motivations of the z transform:
|
||||
%
|
||||
% * By identifying the impulse response of the system we can determine how
|
||||
% it would perform in different frequencies
|
||||
% * By identifying the presence of increasing or decreasing oscillations in
|
||||
% the impulse response of a system we can determine whether the system
|
||||
% could be stable or not
|
||||
|
||||
%% Z transform
|
||||
% One of the things we usually evaluate in the z transform is the pole zero
|
||||
% plot, since it can tell us about stability and causality in
|
||||
% different regions of convergence. Let us just look at one simple example
|
||||
% of a pole zero plot.
|
||||
|
||||
%% Z transform - generate a pole zero plot
|
||||
% There are multiple ways to generate the pole zero plot. If you are
|
||||
% interested, you should look up tf2zp (and its inverse, zp2tf), pzplot,
|
||||
% etc. We are going to introduce the most simple function -- zplane. In the
|
||||
% example, b1 and a1 and coefficients of the numerator and denominator,
|
||||
% i.e, the transfer function. The transfer function is the
|
||||
% the ratio between output (denominator) and input (numerator).
|
||||
|
||||
b1 = [1]; % numerator
|
||||
a1 = [1 -0.5]; % denominator
|
||||
figure;
|
||||
zplane(b1, a1);
|
||||
|
||||
%% BE CAREFUL!
|
||||
% If the input vectors are COLUMN vectors, they would be interpreted as
|
||||
% poles and zeros, and if they are ROW vectors, they would be interpreted
|
||||
% as coefficients of the transfer function.
|
||||
|
||||
%% BE CAREFUL!
|
||||
% zplane takes negative power coefficients, while tf2zp (the one used
|
||||
% in the homework) uses positive power coefficients.
|
||||
|
||||
% In particular, note that polynomials with negative power efficients are
|
||||
% LEFT-ALIGNED, while polynomials with positive power coefficients are
|
||||
% RIGHT-ALIGNED. E.g., for positive coefficients b1 and [0 b1] are the
|
||||
% same polynomial, but not so if negative coefficients. See the following
|
||||
% example.
|
||||
|
||||
% $1/(1-0.5z^-1) = z/(z-0.5)$
|
||||
figure;
|
||||
zplane(b1, a1);
|
||||
|
||||
% $(0+z^-1)/(1-z^-1) = 1/(z-0.5)$
|
||||
figure;
|
||||
zplane([0 b1], a1);
|
||||
|
||||
%% tf2zp and zp2tf
|
||||
b = [2 3 0];
|
||||
a = [1 1/sqrt(2) 1/4];
|
||||
|
||||
[z, p, k] = tf2zp(b, a);
|
||||
% alternatively, tf2zpk
|
||||
|
||||
figure;
|
||||
zplane(z, p);
|
||||
[b, a] = zp2tf(z, p, k);
|
||||
|
||||
%% Z transform - More examples!
|
||||
|
||||
b2 = [1];
|
||||
a2 = [1 -1.5];
|
||||
b3 = [1 -1 0.25];
|
||||
a3 = [1 -23/10 1.2];
|
||||
|
||||
% Example 1 : One pole, outer region is stable and causal
|
||||
figure;
|
||||
subplot(3, 1, 1);
|
||||
zplane(b1, a1);
|
||||
title('$$H_1(z)=\frac{z}{z-\frac{1}{2}}$$', 'interpreter', 'latex');
|
||||
|
||||
% Example 2 : One pole, outer region is causal but not stable, inner region
|
||||
% is stable but not causal
|
||||
subplot(3, 1, 2);
|
||||
zplane(b2, a2);
|
||||
title('$$H_2(z)=\frac{z}{z-\frac{3}{2}}$$', 'interpreter', 'latex');
|
||||
|
||||
% Example 3 : Two poles, outer region is causal, middle region is stable
|
||||
subplot(3, 1, 3);
|
||||
zplane(b3, a3);
|
||||
title('$$H_3(z)=\frac{(z-\frac{1}{2})^2}{(z-\frac{4}{5})(z-\frac{3}{2})}$$', ...
|
||||
'interpreter', 'latex');
|
||||
|
||||
%% On Stability and Causality
|
||||
% * The system is stable iff the region contains the unit circle.
|
||||
% * The system is causal iff the region contains infinity.
|
||||
% * If there is an infinity to the pole, then it's not stable.
|
||||
% * If all the poles are in the unit circle, then the system could be both
|
||||
% stable and causal.
|
||||
|
||||
%% Z transform - Impulse Response
|
||||
% The impulse response is useful because its Fourier transform
|
||||
% (the frequency response) allows us to observe how an input sinusoid
|
||||
% at different frequencies will be transformed.
|
||||
%
|
||||
% The impulse response is obtained by applying the filter to a delta.
|
||||
% There is a custom function to do this (`impz`), but you can also obtain
|
||||
% it other ways.
|
||||
%
|
||||
% The impulse response for the running example is the following (can you
|
||||
% derive this by hand?)
|
||||
% $h[n] = (1/2)^n$
|
||||
[h1, t] = impz(b1, a1, 8); % h is the IMPULSE RESPONSE
|
||||
figure;
|
||||
impz(b1, a1, 32); % for visualization don't get the return value
|
||||
|
||||
%% Z transform - Convolution
|
||||
% You can apply a system on a signal in two ways:
|
||||
% * Convolve with the impulse response (which we obtained just now).
|
||||
% * Use the `filter` functions (which uses tf coefficients).
|
||||
n = 0:1:5;
|
||||
x1 = (1/2).^n;
|
||||
y1 = conv(x1, h1);
|
||||
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
stem(y1);
|
||||
title('Convolution between x_1 and h_1');
|
||||
subplot(2, 1, 2);
|
||||
y2 = filter(b1, a1, x1);
|
||||
stem(y2);
|
||||
title('Filter with b_1,a_1 and x_1');
|
||||
xlim([0 14]);
|
||||
% The above are the same! Except note that convolution creates a longer
|
||||
% "tail."
|
||||
|
||||
%% freqz: digital frequency response
|
||||
% The frequency response is the z-transform of the impulse response. It
|
||||
% tells us how the system will act on each frequency of the input signal
|
||||
% (scaling and phase-shifting).
|
||||
%
|
||||
% This is a somewhat complicated setup -- you may want to save it to a
|
||||
% function if you have to do this repeatedly.
|
||||
[H, w] = freqz(b1, a1);
|
||||
|
||||
Hdb = 20*log10(abs(H));
|
||||
Hph = rad2deg(unwrap(angle(H)));
|
||||
|
||||
% Note the above, especially the `unwrap` function! Make sure to understand
|
||||
% what each of the functions above is for.
|
||||
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
plot(w, Hdb);
|
||||
xlabel("Frequency (rad)");
|
||||
ylabel("|H| (dB)");
|
||||
xlim([0 pi]);
|
||||
xticks([0 pi/2 pi]);
|
||||
xticklabels({'0', '\pi/2', '\pi'});
|
||||
title("Magnitude Response");
|
||||
|
||||
subplot(2, 1, 2);
|
||||
plot(w, Hph);
|
||||
xlabel("Frequency (rad)");
|
||||
ylabel("Phase (deg)");
|
||||
xlim([0 pi]);
|
||||
xticks([0 pi/2 pi]);
|
||||
xticklabels({'0', '\pi/2', '\pi'});
|
||||
title("Phase Response");
|
||||
|
||||
%% Another example of freqz
|
||||
% By default, `freqz` knows nothing about the sampling rate, so the
|
||||
% frequency scale is digital. We can make it in analog frequency by
|
||||
% specifying the sampling rate of the digital signal.
|
||||
|
||||
n = 1024; % number of samples in frequency response
|
||||
fs = 20000; % sampling frequency of input signal
|
||||
[H, f] = freqz(b1, a1, n, fs);
|
||||
|
||||
Hdb = 20*log10(abs(H));
|
||||
Hph = rad2deg(unwrap(angle(H)));
|
||||
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
plot(f, Hdb);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("|H| (dB)")
|
||||
xlim([0 fs/2]);
|
||||
title("Magnitude Response");
|
||||
|
||||
subplot(2, 1, 2);
|
||||
plot(f, Hph);
|
||||
xlabel("Frequency (Hz)");
|
||||
ylabel("Phase (deg)");
|
||||
xlim([0 fs/2]);
|
||||
title("Phase Response");
|
||||
|
||||
%% Yet another example of freqz
|
||||
zer = -0.5;
|
||||
pol = 0.9*exp(j*2*pi*[-0.3 0.3]');
|
||||
|
||||
figure;
|
||||
zplane(zer, pol);
|
||||
|
||||
[b4,a4] = zp2tf(zer, pol, 1);
|
||||
|
||||
[H,w] = freqz(b4, a4);
|
||||
|
||||
Hdb = 20*log10(abs(H));
|
||||
Hph = rad2deg(unwrap(angle(H)));
|
||||
|
||||
figure;
|
||||
subplot(2, 1, 1);
|
||||
plot(w, Hdb);
|
||||
xlabel("Frequency (rad)");
|
||||
ylabel("|H| (dB)");
|
||||
xlim([0 pi]);
|
||||
xticks([0 pi/2 pi]);
|
||||
xticklabels({'0', '\pi/2', '\pi'});
|
||||
title("Magnitude Response");
|
||||
|
||||
subplot(2, 1, 2);
|
||||
plot(w, Hph);
|
||||
xlabel("Frequency (rad)");
|
||||
ylabel("Phase (deg)");
|
||||
xlim([0 pi]);
|
||||
xticks([0 pi/2 pi]);
|
||||
xticklabels({'0', '\pi/2', '\pi'});
|
||||
title("Phase Response");
|
BIN
lessons/lesson06/ztransform.pdf
Normal file
BIN
lessons/lesson06/ztransform.pdf
Normal file
Binary file not shown.
35
lessons/lesson07/bandstop2500.m
Normal file
35
lessons/lesson07/bandstop2500.m
Normal file
@ -0,0 +1,35 @@
|
||||
function Hd = bandstop2500
|
||||
%BANDSTOP2500 Returns a discrete-time filter object.
|
||||
|
||||
% MATLAB Code
|
||||
% Generated by MATLAB(R) 9.9 and Signal Processing Toolbox 8.5.
|
||||
% Generated on: 24-Mar-2021 17:32:55
|
||||
|
||||
% Elliptic Bandstop filter designed using FDESIGN.BANDSTOP.
|
||||
|
||||
% All frequency values are in Hz.
|
||||
Fs = 8192; % Sampling Frequency
|
||||
|
||||
Fpass1 = 2000; % First Passband Frequency
|
||||
Fstop1 = 2300; % First Stopband Frequency
|
||||
Fstop2 = 2700; % Second Stopband Frequency
|
||||
Fpass2 = 3000; % Second Passband Frequency
|
||||
Apass1 = 0.5; % First Passband Ripple (dB)
|
||||
Astop = 60; % Stopband Attenuation (dB)
|
||||
Apass2 = 1; % Second Passband Ripple (dB)
|
||||
match = 'both'; % Band to match exactly
|
||||
|
||||
% Construct an FDESIGN object and call its ELLIP method.
|
||||
h = fdesign.bandstop(Fpass1, Fstop1, Fstop2, Fpass2, Apass1, Astop, ...
|
||||
Apass2, Fs);
|
||||
Hd = design(h, 'ellip', 'MatchExactly', match);
|
||||
|
||||
% Get the transfer function values.
|
||||
[b, a] = tf(Hd);
|
||||
|
||||
% Convert to a singleton filter.
|
||||
Hd = dfilt.df2(b, a);
|
||||
|
||||
|
||||
|
||||
% [EOF]
|
131
lessons/lesson07/filter_design.m
Normal file
131
lessons/lesson07/filter_design.m
Normal file
@ -0,0 +1,131 @@
|
||||
%% Lesson 7a. Designing filters the modern way
|
||||
% * Learn how to use `filterDesigner`
|
||||
% * Learn how to use `fdesign`
|
||||
close all; clear; clc;
|
||||
|
||||
%% Filter Overview
|
||||
% Remember order = # of delay elements, want to minimize to meet
|
||||
% some spec.
|
||||
%
|
||||
% There are 4 main types of filters:
|
||||
% * Lowpass - passes low frequencies through
|
||||
% * Highpass - passes high frequencies through
|
||||
% * Bandpass - passes a specific band
|
||||
% * Bandstop - stops a specific band from going through
|
||||
%
|
||||
% There are four primary implementations of filters that optimize
|
||||
% different properties:
|
||||
% * Butterworth - maxflat passband, monotonic passband & stopband
|
||||
% * Chebychev I - equiripple passband, monotonic stopband
|
||||
% * Chebychev II - monotonic passband, equiripple stopband
|
||||
% * Elliptic - minimum order, equiripple passband & stopband
|
||||
%
|
||||
% In this lesson, you will be able to very clearly see these
|
||||
% properties and filter types!
|
||||
|
||||
%% Filter design (GUI)
|
||||
% Note: Ask Prof. Keene about `filterDesigner`, it'll make him
|
||||
% very happy.
|
||||
filterDesigner; % then export to workspace as numerator and
|
||||
% denominator (not SOS for now)
|
||||
|
||||
%% Applying a GUI-designed filter
|
||||
% Note that if a filter is generated using a `filterDesigner` function,
|
||||
% it will be a filter object. You can apply a filter object using the
|
||||
% `filter()` function. If your filter is given as an impulse response, you
|
||||
% can either use the `filter()` function or convolve the impulse response
|
||||
% and the input signal.
|
||||
|
||||
% Load handel again
|
||||
load handel;
|
||||
|
||||
% Get a generated filter (this should decimate a narrow frequency band
|
||||
% centered at 2.5kHz, assuming a 8192Hz sampling frequency).
|
||||
flt = bandstop2500;
|
||||
|
||||
% Perform the filter
|
||||
y1 = filter(flt, y);
|
||||
|
||||
%% Filter design via `fdesign`
|
||||
% Filter specifications
|
||||
Fsample = 44100;
|
||||
Apass = 1;
|
||||
Astop = 80;
|
||||
Fpass = 1e3;
|
||||
Fstop = 1e4;
|
||||
|
||||
% Use the appropriate `fdesign.*` object to create the filter; in this case,
|
||||
% we're designing a lowpass filter.
|
||||
specs = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fsample);
|
||||
|
||||
% Note: the arguments to `fdesign.*` can be altered by passing in a SPEC option
|
||||
% -- the following call to `fdesign.lowpass` will produce the same filter. If
|
||||
% you want to do more complex stuff (like setting the 3 dB point directly or
|
||||
% setting the filter order), you can change this argument. See `doc
|
||||
% fdesign.lowpass` for more info.
|
||||
equivalent_specs = fdesign.lowpass('Fp,Fst,Ap,Ast', ...
|
||||
Fpass, Fstop, Apass, Astop, Fsample);
|
||||
|
||||
% For a given filter type, there are a myriad of different ways to design it
|
||||
% depending on what properties you want out of the filter (equiripple
|
||||
% passband/stopband, monotonic passband/stopband, minimum-order, max-flat,
|
||||
% etc.), which our lowpass filter object supports.
|
||||
%
|
||||
% Note: `'SystemObject'` should be set to `true` by Mathworks' recommendation
|
||||
% for these calls, even though they will often work without it.
|
||||
designmethods(specs, 'SystemObject', true);
|
||||
|
||||
% There are also various options we can set when designing the filter. In this
|
||||
% example, we'll tell it to match the passband amplitude exactly.
|
||||
designoptions(specs, 'butter', SystemObject=true);
|
||||
|
||||
% Finally, let's make this thing!
|
||||
butter_filter = design(specs, 'butter', ...
|
||||
MatchExactly='passband', SystemObject=true);
|
||||
|
||||
%% Examining a filter
|
||||
% Filters can be visualized with `fvtool`, drawing a nice box around the
|
||||
% transition zone and lines at the edge frequencies & important amplitudes:
|
||||
h = fvtool(butter_filter); % note no call to `figure`!
|
||||
|
||||
% `measure` is another way to check:
|
||||
measurements = measure(butter_filter);
|
||||
|
||||
% `h` is a handle to the graphics object we've created with `fvtool`, and we
|
||||
% can change its properties (listed with `get(h)`) if we wish:
|
||||
h.FrequencyScale = 'Log';
|
||||
ax = h.Children(15); % the axes object, found by looking at `h.Children`
|
||||
ax.YLim = [-60 10]; % in dB
|
||||
|
||||
%% Using a filter
|
||||
% Filter objects have a lot of methods to them (things like `freqz`, `impz`,
|
||||
% `islinphase`, `isallpass`, etc -- check `methods(butter_filter)` if you want
|
||||
% the list) that are rather useful. One method they *don't* have is `filter`,
|
||||
% so if you want to apply a filter to a signal, you do it like this:
|
||||
load handel; % of course; loads `y` and `Fs` into the workspace
|
||||
y1 = butter_filter(y); % use like a function!
|
||||
sound(y, Fs);
|
||||
sound(y1, Fs);
|
||||
|
||||
%% Plotting the result
|
||||
% Obtain the FFT of the original and the filtered signal.
|
||||
shifted_fft_mag = @(sig, len) fftshift(abs(fft(sig, len))) / len;
|
||||
N = 2^15;
|
||||
S1 = shifted_fft_mag(y, N);
|
||||
S2 = shifted_fft_mag(y1, N);
|
||||
F = linspace(-Fsample/2, Fsample/2, N); % not quite accurate but close
|
||||
|
||||
% Plot the FFTs.
|
||||
figure;
|
||||
|
||||
subplot(2, 1, 1);
|
||||
plot(F, S1);
|
||||
title 'Fourier Transform of Original Audio';
|
||||
xlabel 'Frequency (Hz)';
|
||||
ylabel 'Magnitude';
|
||||
|
||||
subplot(2, 1, 2);
|
||||
plot(F, S2);
|
||||
title 'Fourier Transform of Filtered Audio';
|
||||
xlabel 'Frequency (Hz)';
|
||||
ylabel 'Magnitude';
|
103
lessons/lesson07/old_filter_design.m
Normal file
103
lessons/lesson07/old_filter_design.m
Normal file
@ -0,0 +1,103 @@
|
||||
%% Lesson 7c. Designing filters the old fashioned way
|
||||
% (notes kept for historical reasons; the new notes are in `filter_design.m`.
|
||||
%
|
||||
% * Learn how to use the `filterDesigner` GUI.
|
||||
% * Learn how to manually design a filter.
|
||||
clc; clear; close all;
|
||||
|
||||
%% Filter Overview
|
||||
% Remember order = # of delay elements, want to minimize to meet
|
||||
% some spec.
|
||||
%
|
||||
% There are 4 main types of filters:
|
||||
% * Lowpass - passes low frequencies through
|
||||
% * Highpass - passes high frequencies through
|
||||
% * Bandpass - passes a specific band
|
||||
% * Bandstop - stops a specific band from going through
|
||||
%
|
||||
% There are four primary implementations of filters that optimize
|
||||
% different properties:
|
||||
% * Butterworth - maxflat passband, monotonic passband & stopband
|
||||
% * Chebychev I - equiripple passband, monotonic stopband
|
||||
% * Chebychev II - monotonic passband, equiripple stopband
|
||||
% * Elliptic - minimum order, equiripple passband & stopband
|
||||
%
|
||||
% In this lesson, you will be able to very clearly see these
|
||||
% properties and filter types!
|
||||
|
||||
%% Filter Design (GUI)
|
||||
% Note: Ask Prof. Keene about `filterDesigner`, it'll make him
|
||||
% very happy.
|
||||
filterDesigner; % then export to workspace as numerator and
|
||||
% denominator (not SOS for now)
|
||||
|
||||
%% Filter Design (Code)
|
||||
% Manually specify specifications
|
||||
Fs = 44100;
|
||||
Apass = 1;
|
||||
Astop = 80;
|
||||
Fpass = 1e3;
|
||||
Fstop = 1e4;
|
||||
wpass = Fpass / (Fs/2); % normalized to nyquist freq.
|
||||
wstop = Fstop / (Fs/2); % normalized to nyquist freq.
|
||||
|
||||
% Compute the minimum order for Butterworth filter
|
||||
% that meets the specifications.
|
||||
% Alternatively, see `butter1ord`, `cheby1ord`,
|
||||
% `cheby2ord`, `ellipord`.
|
||||
n = buttord(wpass, wstop, Apass, Astop);
|
||||
|
||||
% Generate Butterworth filter with order `n` (which is
|
||||
% designed to meet the specification).
|
||||
% Alternatively, see `cheby1`, `cheby2`, `ellip`.
|
||||
[b, a] = butter(n, wpass);
|
||||
[H, W] = freqz(b, a);
|
||||
|
||||
% Plot the frequency response. (At this point, recall that
|
||||
% the frequency response is the FFT of the impulse response.
|
||||
% Can you generate the frequency response without using
|
||||
% the `freqz` function (instead using the `impz` and `fft`
|
||||
% functions)?
|
||||
f = W .* Fs/(2*pi);
|
||||
figure;
|
||||
semilogx(f, 20*log10(abs(H)));
|
||||
xlim([1e2 1e5]);
|
||||
ylim([-100 5]);
|
||||
grid on;
|
||||
title 'Butterworth Lowpass Filter';
|
||||
xlabel 'Frequency (Hz)';
|
||||
ylabel 'Magnitude (dB)';
|
||||
|
||||
%% Applying a filter
|
||||
% Note that if a filter is generated using a `filterDesigner` function,
|
||||
% it will be a filter object. You can apply a filter object using the
|
||||
% `filter()` function. If your filter is given as an impulse response, you
|
||||
% can either use the `filter()` function or convolve the impulse response
|
||||
% and the input signal.
|
||||
|
||||
% Load handel again
|
||||
load handel;
|
||||
|
||||
% Get a generated filter (this should decimate a narrow frequency band
|
||||
% centered at 2.5kHz, assuming a 8192Hz sampling frequency).
|
||||
flt = bandstop2500;
|
||||
|
||||
% Perform the filter
|
||||
y1 = filter(flt, y);
|
||||
|
||||
%% How does it sound now?
|
||||
sound(y1, Fs);
|
||||
|
||||
%% Plotting the result
|
||||
% Obtain the FFT of the filtered signal.
|
||||
N = 2^15;
|
||||
S = fft(y1, N);
|
||||
S = fftshift(abs(S)) / N;
|
||||
F = linspace(-Fs/2, Fs/2, N);
|
||||
|
||||
% Plot the FFT.
|
||||
figure;
|
||||
plot(F, S);
|
||||
title 'Fourier Transform of Audio';
|
||||
xlabel 'Frequency (Hz)';
|
||||
ylabel 'Magnitude';
|
93
lessons/lesson07/transfer.m
Normal file
93
lessons/lesson07/transfer.m
Normal file
@ -0,0 +1,93 @@
|
||||
%% Lesson 7c. Transfer function objects
|
||||
close all; clear; clc;
|
||||
|
||||
%% Transfer function overview
|
||||
% Transfer functions are abstract representations of LTI systems in terms of
|
||||
% rational functions (numerator and denominator). We used to work with transfer
|
||||
% functions in terms of MATLAB-style polynomials, but Mathworks has come up
|
||||
% with a new, supposedly improved way: transfer function objects! These are
|
||||
% created via `tf` in a variety of ways. For more info, see Mathworks'
|
||||
% documentation -- these models are most helpful when working with cascades of
|
||||
% systems, such as for controls modeling.
|
||||
|
||||
%% Digital transfer function objects
|
||||
% To create a digital tf. object, specify a numerator, denominator, and
|
||||
% sampling time (which may be set to -1 if you want to leave it undefined). The
|
||||
% numerator and denominator are specified in decreasing power order, with s^0
|
||||
% or z^0 on the right.
|
||||
dig_num = [1]; % 1z⁰ = 1
|
||||
dig_den = [2 -1]; % 2z¹ - 1z⁰ = 2z - 1
|
||||
timestep = 0.1; % 0.1 s
|
||||
dig_sys = tf(dig_num, dig_den, timestep);
|
||||
|
||||
%% Analog transfer function objects
|
||||
% Analog transfer functions are created the same way as digital ones, just
|
||||
% without the timestep.
|
||||
an_num = [1 -1]; % 1s¹ - 1s⁰ = 1s - 1
|
||||
an_den = [1 2 1]; % s² + 2s + 1
|
||||
an_sys = tf(an_num, an_den);
|
||||
|
||||
%% Alternate ways of specifying
|
||||
% MATLAB provides a syntax for creating transfer functions out of coded
|
||||
% rational expressions, as this can be clearer:
|
||||
s = tf('s'); % create an s variable that may then be used mathematically
|
||||
an_sys_2 = (s - 1)/(s + 1)^2; % same as above
|
||||
|
||||
%% Investigating the transfer function
|
||||
% One property of interest is the step response, which we can view thus:
|
||||
figure;
|
||||
stepplot(an_sys);
|
||||
|
||||
% MATLAB has a built-in function to get a Bode plot, too (though you should
|
||||
% modify this in post if you want to highlight specific details in the plot).
|
||||
figure;
|
||||
bodeplot(an_sys);
|
||||
|
||||
%% One application
|
||||
% This example is stolen from Mathworks' doc page "Control System Modeling with
|
||||
% Model Objects," as it's an interesting perspective on what you can do with
|
||||
% these. In it, we model the following system:
|
||||
%
|
||||
% x ---> F(s) ---> +( ) ---> C(s) ---> G(s) ---+---> y
|
||||
% - |
|
||||
% ^ |
|
||||
% \---------- S(s) ---------/
|
||||
|
||||
% specify the components of a system
|
||||
G = zpk([], [-1, -1], 1); % no zeroes, double pole at -1, analog
|
||||
C = pid(2, 1.3, 0.3, 0.5); % PID controller object
|
||||
S = tf(5, [1 4]);
|
||||
F = tf(1, [1 1]);
|
||||
|
||||
% find the open-loop transfer function (by breaking the loop at the subtract)
|
||||
open_loop = F*S*G*C; % multiplication in the "frequency" domain
|
||||
|
||||
% check out where the poles & zeroes are
|
||||
figure;
|
||||
pzplot(open_loop);
|
||||
title('Open loop pole/zero plot');
|
||||
xlim([-6 1]);
|
||||
ylim([-2 2]);
|
||||
|
||||
% see what this thing does with a step input
|
||||
figure;
|
||||
stepplot(open_loop);
|
||||
title('Open-loop system step response');
|
||||
% note that this is *not* stable with a step input, as the PID controller loses
|
||||
% its shit!
|
||||
|
||||
% find the closed-loop, whole_system response using `feedback` to specify a
|
||||
% feedback connection
|
||||
full_system = F*feedback(G*C, S);
|
||||
|
||||
% see what this thing looks like now in the s-plane
|
||||
figure;
|
||||
pzplot(full_system);
|
||||
title('Full system pole/zero plot');
|
||||
xlim([-6 1]);
|
||||
ylim([-2 2]);
|
||||
|
||||
% now stable with a step input, as we have feedback
|
||||
figure;
|
||||
stepplot(full_system);
|
||||
title('Full system step response');
|
810
lessons/lesson08/octave-log.txt
Normal file
810
lessons/lesson08/octave-log.txt
Normal file
@ -0,0 +1,810 @@
|
||||
octave:5> pkg load symbolic
|
||||
octave:6> syms x z
|
||||
Symbolic pkg v3.0.1: Python communication link active, SymPy v1.11.1.
|
||||
octave:7> syms
|
||||
Symbolic variables in current scope:
|
||||
x
|
||||
z
|
||||
octave:8> x
|
||||
x = (sym) x
|
||||
octave:9> syms x_0
|
||||
octave:10> xu-0
|
||||
error: 'xu' undefined near line 1, column 1
|
||||
octave:11> x_0
|
||||
x_0 = (sym) x₀
|
||||
octave:12> v = x + 2
|
||||
v = (sym) x + 2
|
||||
octave:13> w = x * z
|
||||
w = (sym) x⋅z
|
||||
octave:14> help subs
|
||||
error: help: 'subs' not found
|
||||
octave:15> help @sym/subs
|
||||
'@sym/subs' is a function from the file /usr/share/octave/packages/symbolic-3.0.1/@sym
|
||||
/subs.m
|
||||
|
||||
-- Method on @sym: subs (F, X, Y)
|
||||
-- Method on @sym: subs (F, Y)
|
||||
-- Method on @sym: subs (F)
|
||||
Replace symbols in an expression with other expressions.
|
||||
|
||||
Example substituting a value for a variable:
|
||||
syms x y
|
||||
f = x*y;
|
||||
subs(f, x, 2)
|
||||
⇒ ans = (sym) 2⋅y
|
||||
If X is omitted, ‘symvar’ is called on F to determine an
|
||||
appropriate variable.
|
||||
|
||||
X and Y can also be vectors or lists of syms to replace:
|
||||
subs(f, {x y}, {sin(x) 16})
|
||||
⇒ ans = (sym) 16⋅sin(x)
|
||||
|
||||
F = [x x*y; 2*x*y y];
|
||||
subs(F, {x y}, [2 sym(pi)])
|
||||
⇒ ans = (sym 2×2 matrix)
|
||||
|
||||
⎡ 2 2⋅π⎤
|
||||
⎢ ⎥
|
||||
⎣4⋅π π ⎦
|
||||
|
||||
With only one argument, ‘subs(F)’ will attempt to find values for
|
||||
each symbol in F by searching the workspace:
|
||||
f = x*y
|
||||
⇒ f = (sym) x⋅y
|
||||
|
||||
x = 42;
|
||||
f
|
||||
⇒ f = (sym) x⋅y
|
||||
Here assigning a numerical value to the variable ‘x’ did not change
|
||||
the expression (because symbols are not the same as variables!)
|
||||
However, we can automatically update ‘f’ by calling:
|
||||
subs(f)
|
||||
⇒ ans = (sym) 42⋅y
|
||||
|
||||
*Warning*: ‘subs’ cannot be easily used to substitute a ‘double’
|
||||
matrix; it will cast Y to a ‘sym’. Instead, create a “function
|
||||
handle” from the symbolic expression, which can be efficiently
|
||||
evaluated numerically. For example:
|
||||
syms x
|
||||
f = exp(sin(x))
|
||||
⇒ f = (sym)
|
||||
|
||||
sin(x)
|
||||
ℯ
|
||||
|
||||
fh = function_handle(f)
|
||||
⇒ fh =
|
||||
|
||||
@(x) exp (sin (x))
|
||||
|
||||
fh(linspace(0, 2*pi, 700)')
|
||||
⇒ ans =
|
||||
1.0000
|
||||
1.0090
|
||||
1.0181
|
||||
1.0273
|
||||
1.0366
|
||||
...
|
||||
|
||||
*Note*: Mixing scalars and matrices may lead to trouble. We
|
||||
support the case of substituting one or more symbolic matrices in
|
||||
for symbolic scalars, within a scalar expression:
|
||||
f = sin(x);
|
||||
g = subs(f, x, [1 sym('a'); pi sym('b')])
|
||||
⇒ g = (sym 2×2 matrix)
|
||||
|
||||
⎡sin(1) sin(a)⎤
|
||||
⎢ ⎥
|
||||
⎣ 0 sin(b)⎦
|
||||
|
||||
When using multiple variables and matrix substitions, it may be
|
||||
helpful to use cell arrays:
|
||||
subs(y*sin(x), {x, y}, {3, [2 sym('a')]})
|
||||
⇒ ans = (sym) [2⋅sin(3) a⋅sin(3)] (1×2 matrix)
|
||||
|
||||
subs(y*sin(x), {x, y}, {[2 3], [2 sym('a')]})
|
||||
⇒ ans = (sym) [2⋅sin(2) a⋅sin(3)] (1×2 matrix)
|
||||
|
||||
*Caution*, multiple interdependent substitutions can be ambiguous
|
||||
and results may depend on the order in which you specify them. A
|
||||
cautionary example:
|
||||
syms y(x) A B
|
||||
u = y + diff(y, x)
|
||||
⇒ u(x) = (symfun)
|
||||
d
|
||||
y(x) + ──(y(x))
|
||||
dx
|
||||
|
||||
subs(u, {y, diff(y, x)}, {A, B})
|
||||
⇒ ans = (sym) A
|
||||
|
||||
subs(u, {diff(y, x), y}, {B, A})
|
||||
⇒ ans = (sym) A + B
|
||||
|
||||
Here it would be clearer to explicitly avoid the ambiguity by
|
||||
calling ‘subs’ twice:
|
||||
subs(subs(u, diff(y, x), B), y, A)
|
||||
⇒ ans = (sym) A + B
|
||||
|
||||
See also: @sym/symfun.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:16> syms r
|
||||
octave:17> w
|
||||
w = (sym) x⋅z
|
||||
octave:18> subs(w, z, r)
|
||||
ans = (sym) r⋅x
|
||||
octave:19> solve(x + 3 == 5, x)
|
||||
ans = (sym) 2
|
||||
octave:20>
|
||||
octave:20> syms a b c
|
||||
octave:21> solve(a*x^2 + b*x + c, x)
|
||||
ans = (sym 2×1 matrix)
|
||||
|
||||
⎡ _____________⎤
|
||||
⎢ ╱ 2 ⎥
|
||||
⎢ b ╲╱ -4⋅a⋅c + b ⎥
|
||||
⎢- ─── - ────────────────⎥
|
||||
⎢ 2⋅a 2⋅a ⎥
|
||||
⎢ ⎥
|
||||
⎢ _____________⎥
|
||||
⎢ ╱ 2 ⎥
|
||||
⎢ b ╲╱ -4⋅a⋅c + b ⎥
|
||||
⎢- ─── + ────────────────⎥
|
||||
⎣ 2⋅a 2⋅a ⎦
|
||||
|
||||
octave:22> help @sym/solve
|
||||
'@sym/solve' is a function from the file /usr/share/octave/packages/symbolic-3.0.1/@sy
|
||||
m/solve.m
|
||||
|
||||
-- Method on @sym: SOL = solve (EQN)
|
||||
-- Method on @sym: SOL = solve (EQN, VAR)
|
||||
-- Method on @sym: SOL = solve (EQN1, ..., EQNN)
|
||||
-- Method on @sym: SOL = solve (EQN1, ..., EQNN, VAR1, ..., VARM)
|
||||
-- Method on @sym: SOL = solve (EQNS, VARS)
|
||||
-- Method on @sym: [S1, ..., SN] = solve (EQNS, VARS)
|
||||
Symbolic solutions of equations, inequalities and systems.
|
||||
|
||||
Examples
|
||||
syms x
|
||||
solve(x == 2*x + 6, x)
|
||||
⇒ ans = (sym) -6
|
||||
solve(x^2 + 6 == 5*x, x);
|
||||
sort(ans)
|
||||
⇒ ans = (sym 2×1 matrix)
|
||||
⎡2⎤
|
||||
⎢ ⎥
|
||||
⎣3⎦
|
||||
|
||||
Sometimes its helpful to assume an unknown is real:
|
||||
syms x real
|
||||
solve(abs(x) == 1, x);
|
||||
sort(ans)
|
||||
⇒ ans = (sym 2×1 matrix)
|
||||
⎡-1⎤
|
||||
⎢ ⎥
|
||||
⎣1 ⎦
|
||||
|
||||
In general, the output will be a list of dictionaries. Each entry
|
||||
of the list is one a solution, and the variables that make up that
|
||||
solutions are keys of the dictionary (fieldnames of the struct).
|
||||
syms x y
|
||||
d = solve(x^2 == 4, x + y == 1);
|
||||
|
||||
% the first solution
|
||||
d{1}.x
|
||||
⇒ (sym) -2
|
||||
d{1}.y
|
||||
⇒ (sym) 3
|
||||
|
||||
% the second solution
|
||||
d{2}.x
|
||||
⇒ (sym) 2
|
||||
d{2}.y
|
||||
⇒ (sym) -1
|
||||
|
||||
But there are various special cases for the output (single versus
|
||||
multiple variables, single versus multiple solutions, etc). FIXME:
|
||||
provide a ’raw_output’ argument or something to always give the
|
||||
general output.
|
||||
|
||||
Alternatively:
|
||||
[X, Y] = solve(x^2 == 4, x + y == 1, x, y)
|
||||
⇒ X = (sym 2×1 matrix)
|
||||
⎡-2⎤
|
||||
⎢ ⎥
|
||||
⎣2 ⎦
|
||||
⇒ Y = (sym 2×1 matrix)
|
||||
⎡3 ⎤
|
||||
⎢ ⎥
|
||||
⎣-1⎦
|
||||
|
||||
You can solve inequalities and systems involving mixed inequalities
|
||||
and equations. For example:
|
||||
solve(x^2 == 4, x > 0)
|
||||
⇒ ans = (sym) x = 2
|
||||
|
||||
syms x
|
||||
solve(x^2 - 1 > 0, x < 10)
|
||||
⇒ ans = (sym) (-∞ < x ∧ x < -1) ∨ (1 < x ∧ x < 10)
|
||||
|
||||
See also: @sym/eq, @sym/dsolve.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:23> eqs = [x + z == 14; x - z == 6]
|
||||
<stdin>:7: SymPyDeprecationWarning:
|
||||
|
||||
non-Expr objects in a Matrix is deprecated. Matrix represents
|
||||
a mathematical matrix. To represent a container of non-numeric
|
||||
entities, Use a list of lists, TableForm, NumPy array, or some
|
||||
other data structure instead.
|
||||
|
||||
See https://docs.sympy.org/latest/explanation/active-deprecations.html#deprecated-non-
|
||||
expr-in-matrix
|
||||
for details.
|
||||
|
||||
This has been deprecated since SymPy version 1.9. It
|
||||
will be removed in a future version of SymPy.
|
||||
|
||||
eqs = (sym 2×1 matrix)
|
||||
|
||||
⎡x + z = 14⎤
|
||||
⎢ ⎥
|
||||
⎣x - z = 6 ⎦
|
||||
|
||||
octave:24> soln = solve(eqs, [x z])
|
||||
soln =
|
||||
|
||||
scalar structure containing the fields:
|
||||
|
||||
x =
|
||||
|
||||
<class sym>
|
||||
|
||||
z =
|
||||
|
||||
<class sym>
|
||||
|
||||
|
||||
octave:25> soln.x
|
||||
ans = (sym) 10
|
||||
octave:26> soln.z
|
||||
ans = (sym) 4
|
||||
octave:27> help subs
|
||||
error: help: 'subs' not found
|
||||
octave:28> help @sym/subs
|
||||
'@sym/subs' is a function from the file /usr/share/octave/packages/symbolic-3.0.1/@sym
|
||||
/subs.m
|
||||
|
||||
-- Method on @sym: subs (F, X, Y)
|
||||
-- Method on @sym: subs (F, Y)
|
||||
-- Method on @sym: subs (F)
|
||||
Replace symbols in an expression with other expressions.
|
||||
|
||||
Example substituting a value for a variable:
|
||||
syms x y
|
||||
f = x*y;
|
||||
subs(f, x, 2)
|
||||
⇒ ans = (sym) 2⋅y
|
||||
If X is omitted, ‘symvar’ is called on F to determine an
|
||||
appropriate variable.
|
||||
|
||||
X and Y can also be vectors or lists of syms to replace:
|
||||
subs(f, {x y}, {sin(x) 16})
|
||||
⇒ ans = (sym) 16⋅sin(x)
|
||||
|
||||
F = [x x*y; 2*x*y y];
|
||||
subs(F, {x y}, [2 sym(pi)])
|
||||
⇒ ans = (sym 2×2 matrix)
|
||||
|
||||
⎡ 2 2⋅π⎤
|
||||
⎢ ⎥
|
||||
⎣4⋅π π ⎦
|
||||
|
||||
With only one argument, ‘subs(F)’ will attempt to find values for
|
||||
each symbol in F by searching the workspace:
|
||||
f = x*y
|
||||
⇒ f = (sym) x⋅y
|
||||
|
||||
x = 42;
|
||||
f
|
||||
⇒ f = (sym) x⋅y
|
||||
Here assigning a numerical value to the variable ‘x’ did not change
|
||||
the expression (because symbols are not the same as variables!)
|
||||
However, we can automatically update ‘f’ by calling:
|
||||
subs(f)
|
||||
⇒ ans = (sym) 42⋅y
|
||||
|
||||
*Warning*: ‘subs’ cannot be easily used to substitute a ‘double’
|
||||
matrix; it will cast Y to a ‘sym’. Instead, create a “function
|
||||
handle” from the symbolic expression, which can be efficiently
|
||||
evaluated numerically. For example:
|
||||
syms x
|
||||
f = exp(sin(x))
|
||||
⇒ f = (sym)
|
||||
|
||||
sin(x)
|
||||
ℯ
|
||||
|
||||
fh = function_handle(f)
|
||||
⇒ fh =
|
||||
|
||||
@(x) exp (sin (x))
|
||||
|
||||
fh(linspace(0, 2*pi, 700)')
|
||||
⇒ ans =
|
||||
1.0000
|
||||
1.0090
|
||||
1.0181
|
||||
1.0273
|
||||
1.0366
|
||||
...
|
||||
|
||||
*Note*: Mixing scalars and matrices may lead to trouble. We
|
||||
support the case of substituting one or more symbolic matrices in
|
||||
for symbolic scalars, within a scalar expression:
|
||||
f = sin(x);
|
||||
g = subs(f, x, [1 sym('a'); pi sym('b')])
|
||||
⇒ g = (sym 2×2 matrix)
|
||||
|
||||
⎡sin(1) sin(a)⎤
|
||||
⎢ ⎥
|
||||
⎣ 0 sin(b)⎦
|
||||
|
||||
When using multiple variables and matrix substitions, it may be
|
||||
helpful to use cell arrays:
|
||||
subs(y*sin(x), {x, y}, {3, [2 sym('a')]})
|
||||
⇒ ans = (sym) [2⋅sin(3) a⋅sin(3)] (1×2 matrix)
|
||||
|
||||
subs(y*sin(x), {x, y}, {[2 3], [2 sym('a')]})
|
||||
⇒ ans = (sym) [2⋅sin(2) a⋅sin(3)] (1×2 matrix)
|
||||
|
||||
*Caution*, multiple interdependent substitutions can be ambiguous
|
||||
and results may depend on the order in which you specify them. A
|
||||
cautionary example:
|
||||
syms y(x) A B
|
||||
u = y + diff(y, x)
|
||||
⇒ u(x) = (symfun)
|
||||
d
|
||||
y(x) + ──(y(x))
|
||||
dx
|
||||
|
||||
subs(u, {y, diff(y, x)}, {A, B})
|
||||
⇒ ans = (sym) A
|
||||
|
||||
subs(u, {diff(y, x), y}, {B, A})
|
||||
⇒ ans = (sym) A + B
|
||||
|
||||
Here it would be clearer to explicitly avoid the ambiguity by
|
||||
calling ‘subs’ twice:
|
||||
subs(subs(u, diff(y, x), B), y, A)
|
||||
⇒ ans = (sym) A + B
|
||||
|
||||
See also: @sym/symfun.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:29> eqn(1)
|
||||
error: 'eqn' undefined near line 1, column 1
|
||||
octave:30> eqs(1)
|
||||
ans = (sym) x + z = 14
|
||||
octave:31> subs(eqs(1), {x, z}, {soln.x, soln.z})
|
||||
ans = (sym) True
|
||||
octave:32> syms n
|
||||
octave:33> solve(n^2 == 4, n)
|
||||
ans = (sym 2×1 matrix)
|
||||
|
||||
⎡-2⎤
|
||||
⎢ ⎥
|
||||
⎣2 ⎦
|
||||
|
||||
octave:34> assume n positive
|
||||
octave:35> assumptions
|
||||
ans =
|
||||
{
|
||||
[1,1] = n: positive
|
||||
}
|
||||
|
||||
octave:36> solve(n^2 == 4, n)
|
||||
ans = (sym) 2
|
||||
octave:37> assume n
|
||||
error: assume: general algebraic assumptions are not supported
|
||||
error: called from
|
||||
assert at line 109 column 11
|
||||
assume at line 65 column 3
|
||||
octave:38> syms n
|
||||
octave:39> assumptions
|
||||
ans = {}(0x0)
|
||||
octave:40> help @sym/assume
|
||||
'@sym/assume' is a function from the file /usr/share/octave/packages/symbolic-3.0.1/@s
|
||||
ym/assume.m
|
||||
|
||||
-- Method on @sym: X = assume (X, COND, COND2, ...)
|
||||
-- Method on @sym: X = assume (X, 'clear')
|
||||
-- Method on @sym: [X, Y] = assume ([X Y], ...)
|
||||
-- Method on @sym: assume (X, COND, COND2, ...)
|
||||
-- Method on @sym: assume (X, 'clear')
|
||||
-- Method on @sym: assume ([X Y], ...)
|
||||
New assumptions on a symbolic variable (replace old if any).
|
||||
|
||||
This function has two different behaviours depending on whether it
|
||||
has an output argument or not. The first form is simpler; it
|
||||
returns a new sym with assumptions given by COND, for example:
|
||||
syms x
|
||||
x1 = x;
|
||||
x = assume(x, 'positive');
|
||||
assumptions(x)
|
||||
⇒ ans =
|
||||
{
|
||||
[1,1] = x: positive
|
||||
}
|
||||
assumptions(x1) % empty, x1 still has the original x
|
||||
⇒ ans = {}(0x0)
|
||||
|
||||
Another example to help clarify:
|
||||
x1 = sym('x', 'positive')
|
||||
⇒ x1 = (sym) x
|
||||
x2 = assume(x1, 'negative')
|
||||
⇒ x2 = (sym) x
|
||||
assumptions(x1)
|
||||
⇒ ans =
|
||||
{
|
||||
[1,1] = x: positive
|
||||
}
|
||||
assumptions(x2)
|
||||
⇒ ans =
|
||||
{
|
||||
[1,1] = x: negative
|
||||
}
|
||||
|
||||
The second form—with no output argument—is different; it attempts
|
||||
to find *all* instances of symbols with the same name as X and
|
||||
replace them with the new version (with COND assumptions). For
|
||||
example:
|
||||
syms x
|
||||
x1 = x;
|
||||
f = sin(x);
|
||||
assume(x, 'positive');
|
||||
assumptions(x)
|
||||
⇒ ans =
|
||||
{
|
||||
[1,1] = x: positive
|
||||
}
|
||||
assumptions(x1)
|
||||
⇒ ans =
|
||||
{
|
||||
[1,1] = x: positive
|
||||
}
|
||||
assumptions(f)
|
||||
⇒ ans =
|
||||
{
|
||||
[1,1] = x: positive
|
||||
}
|
||||
|
||||
To clear assumptions on a variable use ‘assume(x, 'clear')’, for
|
||||
example:
|
||||
syms x positive
|
||||
f = sin (x);
|
||||
assume (x, 'clear')
|
||||
isempty (assumptions (f))
|
||||
⇒ ans = 1
|
||||
|
||||
*Warning*: the second form operates on the caller’s workspace via
|
||||
evalin/assignin. So if you call this from other functions, it will
|
||||
operate in your function’s workspace (and not the ‘base’
|
||||
workspace). This behaviour is for compatibility with other
|
||||
symbolic toolboxes.
|
||||
|
||||
FIXME: idea of rewriting all sym vars is a bit of a hack, not well
|
||||
tested (for example, with global vars.)
|
||||
|
||||
See also: @sym/assumeAlso, assume, assumptions, sym, syms.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:41> assume n positive
|
||||
octave:42> assumptions
|
||||
ans =
|
||||
{
|
||||
[1,1] = n: positive
|
||||
}
|
||||
|
||||
octave:43> assume n clear
|
||||
octave:44> assumptions
|
||||
ans = {}(0x0)
|
||||
octave:45> exp(log(x))
|
||||
ans = (sym) x
|
||||
octave:46> e^(log(x))
|
||||
ans = (sym) x
|
||||
octave:47> x + 3
|
||||
ans = (sym) x + 3
|
||||
octave:48> (x + 3)*(1/x + 3)
|
||||
ans = (sym)
|
||||
|
||||
⎛ 1⎞
|
||||
⎜3 + ─⎟⋅(x + 3)
|
||||
⎝ x⎠
|
||||
|
||||
octave:49> (x + 3)*(1/(x + 3))
|
||||
ans = (sym) 1
|
||||
octave:50> help @sym/simplify
|
||||
'@sym/simplify' is a function from the file /usr/share/octave/packages/symbolic-3.0.1/
|
||||
@sym/simplify.m
|
||||
|
||||
-- Method on @sym: simplify (X)
|
||||
Simplify an expression.
|
||||
|
||||
Example:
|
||||
syms x
|
||||
p = x^2 + x + 1
|
||||
⇒ p = (sym)
|
||||
2
|
||||
x + x + 1
|
||||
q = horner (p)
|
||||
⇒ q = (sym) x⋅(x + 1) + 1
|
||||
|
||||
d = p - q
|
||||
⇒ d = (sym)
|
||||
2
|
||||
x - x⋅(x + 1) + x
|
||||
|
||||
isAlways(p == q)
|
||||
⇒ 1
|
||||
|
||||
simplify(p - q)
|
||||
⇒ (sym) 0
|
||||
|
||||
Please note that ‘simplify’ is not a well-defined mathematical
|
||||
operation: its precise behaviour can change between software
|
||||
versions (and certainly between different software packages!)
|
||||
|
||||
See also: @sym/isAlways, @sym/factor, @sym/expand, @sym/rewrite.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:51> (x + 3)^2 + (x + 3) + (x + 3)^2
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
x + 2⋅(x + 3) + 3
|
||||
|
||||
octave:52> simplify((x + 3)^2 + (x + 3) + (x + 3)^2)
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
x + 2⋅(x + 3) + 3
|
||||
|
||||
octave:53> expand((x + 3)^2 + (x + 3) + (x + 3)^2)
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
2⋅x + 13⋅x + 21
|
||||
|
||||
octave:54> collect((x + 3)^2 + (x + 3) + (x + 3)^2)
|
||||
error: 'collect' undefined near line 1, column 1
|
||||
octave:55> combine
|
||||
error: 'combine' undefined near line 1, column 1
|
||||
octave:56> factor
|
||||
error: Invalid call to factor. Correct usage is:
|
||||
|
||||
-- PF = factor (Q)
|
||||
-- [PF, N] = factor (Q)
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:57> expand((x + 3)^2 + (x + 3) + (x + 3)^2)
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
2⋅x + 13⋅x + 21
|
||||
|
||||
octave:58> factor(ans)
|
||||
ans = (sym) (x + 3)⋅(2⋅x + 7)
|
||||
octave:59> partfrac
|
||||
error: 'partfrac' undefined near line 1, column 1
|
||||
octave:60> help @sym/partfrac
|
||||
'@sym/partfrac' is a function from the file /usr/share/octave/packages/symbolic-3.0.1/
|
||||
@sym/partfrac.m
|
||||
|
||||
-- Method on @sym: partfrac (F)
|
||||
-- Method on @sym: partfrac (F, X)
|
||||
Compute partial fraction decomposition of a rational function.
|
||||
|
||||
Examples:
|
||||
syms x
|
||||
f = 2/(x + 4)/(x + 1)
|
||||
⇒ f = (sym)
|
||||
2
|
||||
───────────────
|
||||
(x + 1)⋅(x + 4)
|
||||
|
||||
partfrac(f)
|
||||
⇒ ans = (sym)
|
||||
2 2
|
||||
- ───────── + ─────────
|
||||
3⋅(x + 4) 3⋅(x + 1)
|
||||
|
||||
Other examples:
|
||||
syms x y
|
||||
partfrac(y/(x + y)/(x + 1), x)
|
||||
⇒ ans = (sym)
|
||||
y y
|
||||
- ─────────────── + ───────────────
|
||||
(x + y)⋅(y - 1) (x + 1)⋅(y - 1)
|
||||
|
||||
partfrac(y/(x + y)/(x + 1), y)
|
||||
⇒ ans = (sym)
|
||||
x 1
|
||||
- ─────────────── + ─────
|
||||
(x + 1)⋅(x + y) x + 1
|
||||
|
||||
See also: @sym/factor.
|
||||
|
||||
Additional help for built-in functions and operators is
|
||||
available in the online version of the manual. Use the command
|
||||
'doc <topic>' to search the manual index.
|
||||
|
||||
Help and information about Octave is also available on the WWW
|
||||
at https://www.octave.org and via the help@octave.org
|
||||
mailing list.
|
||||
octave:61>
|
||||
octave:61>
|
||||
octave:61>
|
||||
octave:61>
|
||||
octave:61>
|
||||
octave:61> partfrac((x^7+x^2)/(x^3 - 3*x + 2))
|
||||
ans = (sym)
|
||||
|
||||
4 2 124 25 2
|
||||
x + 3⋅x - 2⋅x + 9 - ───────── + ───────── + ──────────
|
||||
9⋅(x + 2) 9⋅(x - 1) 2
|
||||
3⋅(x - 1)
|
||||
|
||||
octave:62> (x^7+x^2)/(x^3 - 3*x + 2)
|
||||
ans = (sym)
|
||||
|
||||
7 2
|
||||
x + x
|
||||
────────────
|
||||
3
|
||||
x - 3⋅x + 2
|
||||
|
||||
octave:63> p = [1 2 3 4]
|
||||
p =
|
||||
|
||||
1 2 3 4
|
||||
|
||||
octave:64> poly2sim(p, x)
|
||||
error: 'poly2sim' undefined near line 1, column 1
|
||||
octave:65> syms f(y)
|
||||
octave:66> syms
|
||||
Symbolic variables in current scope:
|
||||
a
|
||||
ans
|
||||
b
|
||||
c
|
||||
eqs
|
||||
f (symfun)
|
||||
n
|
||||
r
|
||||
v
|
||||
w
|
||||
x
|
||||
x_0
|
||||
y
|
||||
z
|
||||
octave:67> f
|
||||
f(y) = (symfun) f(y)
|
||||
octave:68> f(y) = y^2
|
||||
f(y) = (symfun)
|
||||
|
||||
2
|
||||
y
|
||||
|
||||
octave:69> f
|
||||
f(y) = (symfun)
|
||||
|
||||
2
|
||||
y
|
||||
|
||||
octave:70> finverse
|
||||
error: 'finverse' undefined near line 1, column 1
|
||||
|
||||
The 'finverse' function belongs to the symbolic package from Octave
|
||||
Forge but has not yet been implemented.
|
||||
|
||||
Please read <https://www.octave.org/missing.html> to learn how you can
|
||||
contribute missing functionality.
|
||||
octave:71> syms t
|
||||
octave:72> int(1/t, 1, x)
|
||||
ans = (sym) log(x)
|
||||
octave:73> int(1/t, .5, x)
|
||||
warning: passing floating-point values to sym is dangerous, see "help sym"
|
||||
warning: called from
|
||||
double_to_sym_heuristic at line 50 column 7
|
||||
sym at line 379 column 13
|
||||
int at line 138 column 7
|
||||
|
||||
ans = (sym) log(x) + log(2)
|
||||
octave:74> x^2
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
x
|
||||
|
||||
octave:75> x^2 + 5
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
x + 5
|
||||
|
||||
octave:76> diff(x^2 + 5)
|
||||
ans = (sym) 2⋅x
|
||||
octave:77> diff(x^2 + z^3 + 5)
|
||||
ans = (sym) 2⋅x
|
||||
octave:78> diff(x^2 + z^3 + 5, z)
|
||||
ans = (sym)
|
||||
|
||||
2
|
||||
3⋅z
|
||||
|
||||
octave:79> syms y(t) a
|
||||
octave:80> diff(y) == a*y
|
||||
ans = (sym)
|
||||
|
||||
d
|
||||
──(y(t)) = a⋅y(t)
|
||||
dt
|
||||
|
||||
octave:81> dsolve(diff(y) == a*y, t)
|
||||
error: Python exception: AttributeError: 'Symbol' object has no attribute 'lhs'
|
||||
occurred at line 7 of the Python code block:
|
||||
ics = {ics.lhs: ics.rhs}
|
||||
error: called from
|
||||
pycall_sympy__ at line 179 column 7
|
||||
dsolve at line 198 column 8
|
||||
octave:82> dirac(x)
|
||||
ans = (sym) δ(x)
|
||||
octave:83> laplace(dirac(x))
|
||||
ans = (sym) 1
|
||||
octave:84> laplace(dirac(x - 1))
|
||||
ans = (sym)
|
||||
|
||||
-s
|
||||
ℯ
|
||||
|
||||
octave:85> (1:5)(2)
|
||||
ans = 2
|
||||
octave:86>
|
BIN
lessons/lesson08/octave-workspace
Normal file
BIN
lessons/lesson08/octave-workspace
Normal file
Binary file not shown.
183
lessons/lesson08/symbolic_toolbox.m
Normal file
183
lessons/lesson08/symbolic_toolbox.m
Normal file
@ -0,0 +1,183 @@
|
||||
%% Symbolic Toolbox
|
||||
% MATLAB is typically associated with computing *numerical* solutions
|
||||
% (i.e., estimating solutions using floating point calculations), we
|
||||
% may often want to compute *analytic* solutions (exact solutions,
|
||||
% often represented by formulas).
|
||||
%
|
||||
% Wolfram Mathematica is a premier example of technical software with
|
||||
% support for symbolic computation, but we can achieve many useful
|
||||
% symbolic calculations in MATLAB using the *symbolic toolbox*.
|
||||
%
|
||||
% The symbolic toolbox is useful if you want to represent an abstract
|
||||
% expression. You can think of a symbolic calculation as storing the
|
||||
% structure of expressions to operate on rather than the values
|
||||
% themselves.
|
||||
clear; clc; close all;
|
||||
|
||||
%% Create symbolic variables
|
||||
syms x z;
|
||||
|
||||
%% Creating expressions
|
||||
v = x + 2;
|
||||
w = x * z;
|
||||
|
||||
%% Substituting expressions into a symbolic expression
|
||||
subs(v, x, 3);
|
||||
|
||||
% You can also substitute symbolic expressions, not only values.
|
||||
syms r;
|
||||
subs(w, z, r);
|
||||
|
||||
%% Solve a symbolic equation for a variable
|
||||
% You may want to look at the documentation page for the `solve` function.
|
||||
% If the expression cannot be solved analytically, MATLAB will default
|
||||
% to using a numerical solver.
|
||||
solve(x + 3 == 5, x);
|
||||
|
||||
syms a b c;
|
||||
solve(a*x^2 + b*x + c, x);
|
||||
|
||||
% Solving multiple variables simultaneously
|
||||
eqs = [x + z == 14, x - z == 6];
|
||||
soln = solve(eqs, [x z]);
|
||||
soln.x;
|
||||
soln.z;
|
||||
|
||||
%% Set "assumptions" (constraints) on a variable
|
||||
% This is the shorthand syntax for setting assumptions on symbolic objects.
|
||||
% See also the `assume` function.
|
||||
syms n positive;
|
||||
solve(n^2 == 4, n);
|
||||
|
||||
%% Simplify an expression
|
||||
% This attempts to simplify an expression using known
|
||||
% mathematical identities.
|
||||
simplify(exp(log(x)));
|
||||
|
||||
% See also `simplifyFraction` for more efficient simplification
|
||||
% of fractions only.
|
||||
|
||||
%% Collect
|
||||
% This collects coefficients of like terms together.
|
||||
collect((x + 2) * (x + 3), x);
|
||||
|
||||
%% Combine
|
||||
% Tries to rewrite products of powers in the expression as a single power
|
||||
combine(x^4 * x^3);
|
||||
|
||||
% Has other options such as 'log' and 'sincos'
|
||||
assume(x > 0);
|
||||
combine(log(x) + log(2*x), 'log');
|
||||
combine(sin(x)*cos(x), 'sincos');
|
||||
|
||||
%% Expand
|
||||
% Similar to `collect`, but expands all variables. More or less the
|
||||
% inverse of `combine`.
|
||||
expand((x + 5)^3);
|
||||
|
||||
%% Partial fraction decomposition
|
||||
partfrac((x^7+x^2)/(x^3 - 3*x + 2));
|
||||
|
||||
%% poly2sym and sym2poly
|
||||
p = [1 2 3 4];
|
||||
psym = poly2sym(p, x);
|
||||
q = sym2poly(psym);
|
||||
|
||||
%% Symbolic functions
|
||||
% Symbolic functions are like symbolic expressions but with a formal
|
||||
% parameter rather than all free parameters. This may be useful for
|
||||
% substituting for a symbolic variable or for differential equations.
|
||||
syms f(y);
|
||||
f(y) = y^2;
|
||||
f(4);
|
||||
|
||||
%% Compose symbolic functions
|
||||
syms g(y)
|
||||
g(y) = sin(y);
|
||||
h = compose(f, g);
|
||||
|
||||
%% Symbolic function inverse
|
||||
f(y) = exp(y);
|
||||
finverse(f)
|
||||
|
||||
%% Symbolic differentiation
|
||||
% Note that this `diff` is different from the `diff` from before.
|
||||
% This one is actually `sym.diff`.
|
||||
syms x y z;
|
||||
v = x^2 + 16*x + 5;
|
||||
dvdx = diff(v);
|
||||
dvdx_3 = subs(dvdx, x,3);
|
||||
|
||||
%% Partial differentiation
|
||||
% This function assumes derivatives commute (i.e., second partials exist
|
||||
% and are continuous).
|
||||
w = -x^3 + x^2 + 3*y + 25*sin(x*y);
|
||||
dwdx = diff(w, x);
|
||||
dwdy = diff(w, y);
|
||||
|
||||
% third order derivative w.r.t. x
|
||||
dw3dx3 = diff(w, x, 3);
|
||||
|
||||
% Vector operations exist as well such as: curl, divergence, gradient,
|
||||
% laplacian, jacobian, hessian...
|
||||
|
||||
%% Differential equations
|
||||
syms y(t) a;
|
||||
dsolve(diff(y) == a*y, t);
|
||||
dsolve(diff(y) == a*y, y(0) == 5); % with initial conditions
|
||||
|
||||
%% Symbolic integration
|
||||
v = x^2 + 16*x + 5;
|
||||
V = int(v);
|
||||
|
||||
%% Definite integral
|
||||
syms a b;
|
||||
Vab = int(v, a, b);
|
||||
V01 = int(v, 0, 1);
|
||||
|
||||
%% z transform
|
||||
syms a n z;
|
||||
f = a^n;
|
||||
ztrans(f);
|
||||
|
||||
%% Symbolic matrices
|
||||
syms m;
|
||||
n = 4;
|
||||
A = m.^((0:n)'*(0:n));
|
||||
D = diff(A);
|
||||
|
||||
%% Laplace Transform
|
||||
syms t a s;
|
||||
f = exp(-a*t);
|
||||
laplace(f);
|
||||
|
||||
%% Inverse Laplace Transform
|
||||
ilaplace(-4*s+8/(s^2+6*s+8));
|
||||
|
||||
%% Fourier Transform
|
||||
f = dirac(x) + sin(x);
|
||||
fourier(f);
|
||||
|
||||
%% Inverse Fourier Transform
|
||||
syms w;
|
||||
|
||||
% fourier transform of cosine(t)
|
||||
expr = dirac(w+1) + dirac(w-1);
|
||||
ift = ifourier(expr);
|
||||
simplify(ift);
|
||||
|
||||
%% Note: performance
|
||||
syms x v;
|
||||
v = x^3 + 5*x^2 - 3*x + 9;
|
||||
t = 1:1e4;
|
||||
|
||||
tic;
|
||||
X = t.^3 + 5*t.^2 - 3*t + 9;
|
||||
toc;
|
||||
|
||||
tic;
|
||||
Y = subs(v,x,t);
|
||||
toc;
|
||||
|
||||
% Symbolic computation and data structures are relatively expensive
|
||||
% when compared to numerical operations! Use sparingly!
|
182
lessons/lesson09/stoch.m
Normal file
182
lessons/lesson09/stoch.m
Normal file
@ -0,0 +1,182 @@
|
||||
%% INTRODUCTION TO STOCHASTICITY
|
||||
|
||||
% Electrical engineers often use MATLAB to simulate random process, and the
|
||||
% reason that it is so popular is that a lot of problems in EE are
|
||||
% stochastic problems. What happens when there's random noise in a channel,
|
||||
% what is the probability of corrupting a signal to the point that it
|
||||
% cannot be recovered?
|
||||
|
||||
% Today, we are going to explore the idea of randomness with case studies.
|
||||
% We are first going to show simple examples of stochastic processes, and
|
||||
% will conclude with a more elaborate exploration of stochasticity in
|
||||
% communication channels
|
||||
clc; clear; close all;
|
||||
|
||||
%% EXAMPLE 1 : MONTY HALL
|
||||
% The classic monty hall problem -- do you switch the door or not. The
|
||||
% correct answer is you always switch. But why?? Let's find out
|
||||
|
||||
% Let's do a simulation to experimentally see the results, let's say there
|
||||
% are two contestants, the first contestant never switches, the second
|
||||
% contestant switches.
|
||||
|
||||
% There are different ways to do it. Let's assume that the prize is
|
||||
% always behind door 3 and we choose at random which door the contestant
|
||||
% chooses.
|
||||
|
||||
% If contestant 1 picks 3, then the contestant wins. For contestant 2, if
|
||||
% the contestant chooses 3 then we choose one of the two other doors at
|
||||
% random to show. If contestant 2 chose door 1 or 2, we show the
|
||||
% contestant the other empty door.
|
||||
|
||||
N = 5e5;
|
||||
choose_door = unidrnd(3,1,N);
|
||||
result = zeros(2,N);
|
||||
result(1, choose_door == 3) = 1;
|
||||
|
||||
% Inefficient but for readability. It's clear that contestant 2 has a 2/3
|
||||
% success rate
|
||||
for i = 1:N
|
||||
if choose_door(i) == 3
|
||||
choose_door(i) = unidrnd(2,1);
|
||||
else
|
||||
choose_door(i) = 3;
|
||||
end
|
||||
end
|
||||
|
||||
result(2, choose_door == 3) = 1;
|
||||
|
||||
% take the running mean
|
||||
win_rate = cumsum(result, 2);
|
||||
x = 1:1:N;
|
||||
win_rate = win_rate ./ [x;x];
|
||||
|
||||
%% Plotting the results of example 1
|
||||
figure;
|
||||
hold on;
|
||||
plot(x, win_rate(1,:), 'DisplayName', 'no switch');
|
||||
plot(x, win_rate(2,:), 'DisplayName', 'switch');
|
||||
hold off;
|
||||
legend show;
|
||||
title 'Monty Hall Problem Simulation Results';
|
||||
|
||||
%% EXAMPLE 2 : CASINO
|
||||
|
||||
% A casino offers a game in which a fair coin is tossed repeatedly until
|
||||
% the first heads comes up, for a total of k+1 tosses. The casino will pay
|
||||
% out k dollars
|
||||
|
||||
% Let's see how much money you are going to get if you play the game
|
||||
N = 5e5;
|
||||
num_tosses = zeros(1,N);
|
||||
for i = 1:N
|
||||
res = randi([0,1]);
|
||||
while (res ~= 0)
|
||||
num_tosses(i) = num_tosses(i) + 1;
|
||||
res = randi([0,1]);
|
||||
end
|
||||
end
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
histogram(num_tosses, unique(num_tosses));
|
||||
hold off;
|
||||
xlabel Frequency;
|
||||
ylabel Winnings;
|
||||
|
||||
%% Radar/Signal Detection Example
|
||||
N = 10000;
|
||||
i = 1:N;
|
||||
rdm = rand(1,N);
|
||||
X = rdm > 0.5; % Signal: 0 or 1 equiprobable
|
||||
N = randn(1,N); % Noise: standard normal
|
||||
|
||||
Y = X + N; % Recieved
|
||||
|
||||
% For each observation, either the sample comes from N(0,1) or N(1,1)
|
||||
|
||||
% To guess if the true signal for each observation, x_i is 0 or 1 we
|
||||
% compute P[true = 0 | x_i] and P[true = 1 | x_i] and choose the larger
|
||||
% one.
|
||||
|
||||
% By Bayes' Law,
|
||||
% P[x_i | true = S]*P[true = S]
|
||||
% P[true = S | x_i] = ----------------------------- , S = 0,1
|
||||
% P[x_i]
|
||||
|
||||
% Since P[x_i] is common to both P[true = 0 | x_i] and P[true = 1 | x_i],
|
||||
% we only have to maximize the numerator. Also since
|
||||
% P[true = 0] = P[true = 1], we need to maximize P[x_i | true = S], S = 0,1
|
||||
|
||||
%% Showing the decision boundary visually
|
||||
x = -5:0.001:5;
|
||||
figure;
|
||||
plot(x, [normpdf(x,0,1); normpdf(x,1,1)]);
|
||||
xline(0.5, '--');
|
||||
|
||||
legend 'Sent 0', 'Sent 1';
|
||||
xlabel 'Received value';
|
||||
ylabel 'Likelihood';
|
||||
|
||||
%% Modeling the distribution boundary
|
||||
prob0 = normpdf(Y, 0, 1);
|
||||
prob1 = normpdf(Y, 1, 1);
|
||||
|
||||
decision = prob1 > prob0;
|
||||
result = decision == X;
|
||||
|
||||
figure;
|
||||
plot(i, cumsum(result)./i);
|
||||
xlabel 'Number of Observations';
|
||||
ylabel 'Percent Correct';
|
||||
title 'Signal Detection';
|
||||
|
||||
%%
|
||||
% What happens if the prior probabilities are not equal?
|
||||
%
|
||||
% If the priors are known, then we can multiply them to the probabilities
|
||||
% we used earlier according to Bayes' Law. This technique is called MAP
|
||||
% (Maximum a posteriori) estimation.
|
||||
%
|
||||
% But if the priors are NOT known, then we can assume equiprobable and use
|
||||
% the same technique as before. This technique is called ML (Maximum
|
||||
% likelihood) estimation. Clearly this performs worse than MAP if the
|
||||
% priors are not equal, i.e., the equiprobable assumption is false.
|
||||
|
||||
P0 = 0.8;
|
||||
X = rdm > P0; % Now the signal is 1 with probability 0.2
|
||||
|
||||
Y = X + N;
|
||||
|
||||
%% Graphing this new problem
|
||||
figure;
|
||||
subplot(211);
|
||||
plot(x, [normpdf(x,0,1); normpdf(x,1,1)]);
|
||||
xline(0.5, '--');
|
||||
title ML;
|
||||
xlabel 'Received value';
|
||||
ylabel 'Likelihood';
|
||||
|
||||
subplot(212);
|
||||
plot(x, [normpdf(x,0,1)*P0; normpdf(x,1,1)*(1 - P0)]);
|
||||
xline(0.5 + log(P0/(1-P0)), '--');
|
||||
title 'MAP';
|
||||
xlabel 'Received value';
|
||||
ylabel 'Likelihood';
|
||||
|
||||
%% MAP decision rule
|
||||
% Now we include the priors
|
||||
prob0MAP = normpdf(Y, 0, 1) * P0;
|
||||
prob1MAP = normpdf(Y, 1, 1) * (1 - P0);
|
||||
|
||||
decisionMAP = prob1MAP > prob0MAP;
|
||||
|
||||
resultML = decision == X; % previous example was ML
|
||||
resultMAP = decisionMAP == X; % current MAP estimate
|
||||
|
||||
figure;
|
||||
plot(i, [cumsum(resultML)./i; cumsum(resultMAP)./i]);
|
||||
xlabel 'Number of Observations';
|
||||
ylabel 'Percent Correct';
|
||||
title 'Signal Detection: MAP vs. ML';
|
||||
legend ML MAP;
|
256
lessons/lesson10/chaos.m
Normal file
256
lessons/lesson10/chaos.m
Normal file
@ -0,0 +1,256 @@
|
||||
%% Lesson 10, extra -- Chaos!
|
||||
% Based on work for PH429: Chaos & Nonlinear Dynamics. The following was
|
||||
% translated from the original NumPy/Matplotlib code. See Strogatz' Nonlinear
|
||||
% Dynamics and Chaos (the source for much of this information) if you want to
|
||||
% know more!
|
||||
|
||||
close all; clear; clc;
|
||||
|
||||
% Simple systems of nonlinear differential equations (also iterated nonlinear
|
||||
% maps) often exhibit surprisingly complex behavior. Lorenz's "strange
|
||||
% attractor," discovered in 1963, was an example of this: he discovered that an
|
||||
% exceedingly simplified (and entirely deterministic!) model of the weather was
|
||||
% still able to produce unpredictable fluctuations in temperature, wind speed,
|
||||
% etc. -- the system exponentially amplified miniscule parameter changes, so
|
||||
% every decimal place mattered. Further work with analog computers and the
|
||||
% then-emerging digital computers led to the field we now call chaos theory.
|
||||
|
||||
% Chaos has much to do with fractal geometry, so we'll start by generating a
|
||||
% few fractals. Because... why not?
|
||||
|
||||
%% The Chaos Game & Sierpinski Triangles
|
||||
% The game is simple:
|
||||
% 1. Place three vertices in the plane, corresponding to the vertices of an
|
||||
% equilateral triangle.
|
||||
% 2. Randomly choose a point P(0).
|
||||
% 3. Each turn, choose a random vertex, and plot a point P(n) halfway between
|
||||
% that vertex and point P(n - 1).
|
||||
% Let's see what happens.
|
||||
|
||||
n1 = 5e5; % points
|
||||
vertices = [0, 0; .5, .5*sqrt(3); 1, 0];
|
||||
r = .5; % fraction of the way between points and vertices (here halfway)
|
||||
|
||||
% point coordinates
|
||||
points = zeros(n1, 2);
|
||||
choices = randi([1 3], n1, 1);
|
||||
|
||||
% randomly choose the first point somewhere in the plane
|
||||
points(1, :) = 100*randn(1, 2);
|
||||
|
||||
% choose the rest
|
||||
% note: the loop here is actually necessary, like it was in G-S -- each
|
||||
% iteration depends upon the previous one.
|
||||
for i = 2:n1
|
||||
choice = choices(i);
|
||||
vertex = vertices(choice, :);
|
||||
last_point = points(i - 1, :);
|
||||
|
||||
points(i, :) = last_point + r*(vertex - last_point);
|
||||
end
|
||||
|
||||
% plot the thing
|
||||
figure;
|
||||
scatter(points(:, 1), points(:, 2), 1);
|
||||
xlim([-.1 1.1]);
|
||||
ylim([-.2 1]);
|
||||
xticks([]);
|
||||
yticks([]);
|
||||
pbaspect([1 1 1]); % make the plot box square
|
||||
title('The Sierpinski Triangle, by Chance', 'Interpreter', 'latex');
|
||||
|
||||
% A rather important property of fractals is their fractional dimension -- this
|
||||
% triangle, for example, is not quite two-dimensional but is clearly more than
|
||||
% one-dimensional. So how do we measure this dimension?
|
||||
|
||||
% One simple measure, known as self-similarity dimension, is relatively easy to
|
||||
% find for the Sierpinski triangle. The idea is we simply examine how many
|
||||
% smaller versions of a given shape could fit into that shape, and what size
|
||||
% they would be in relation. For example, a square with scale 1 can be made up
|
||||
% of 4 smaller squares scaled by 1/2, or 9 smaller squares with scale 1/3:
|
||||
% ----------------- -----------------
|
||||
% | | | | |
|
||||
% | | | 1/2 | 1/2 |
|
||||
% | | | | |
|
||||
% | 1 | = |-------|-------|
|
||||
% | | | | |
|
||||
% | | | 1/2 | 1/2 |
|
||||
% | | | | |
|
||||
% ----------------- -----------------
|
||||
% A square thus has self-similarity dimension log₂4 = log₃9 = 2 (as one might
|
||||
% expect). The Sierpinski triangle is composed of 3 copies of itself scaled by
|
||||
% 1/2, and thus has self-similarity dimension log₂3 ≈ 1.585.
|
||||
|
||||
% I wonder if we could have MATLAB calculate these...
|
||||
|
||||
%% Iterated Maps
|
||||
% One way to create chaotic behavior is to iterate a nonlinear map: e.g., plot
|
||||
% the set {x, sin(x), sin(sin(x)), sin(sin(sin(x))), ...}. The values will
|
||||
% generally hop unpredictably around, but will often stay closer to some values
|
||||
% than others...
|
||||
|
||||
% The following plot is a visual representation of these iterations, called a
|
||||
% cobweb. Cobwebs are often used to qualitatively analyze nonlinear maps. The
|
||||
% idea is, since the output of the map will be fed back into the input, we plot
|
||||
% a point on the map's curve, translate horizontally to the line y = x, then
|
||||
% translate vertically back to the map and repeat. This gives a visual
|
||||
% representation of plugging the output back into the input.
|
||||
|
||||
% When you see this, think about which points on the map will "attract" the
|
||||
% cobweb, which will "repel" it, and how one might go about making that
|
||||
% distinction.
|
||||
|
||||
n2 = 10;
|
||||
map = @(x) 2*sin(x);
|
||||
|
||||
% create the map curve and the center line
|
||||
x = linspace(0, pi, 100).';
|
||||
y_map = map(x);
|
||||
y_line = x;
|
||||
|
||||
% create the cobweb
|
||||
map_pts = zeros(2*n2 + 1, 2);
|
||||
map_pts(1, :) = [.2, 0];
|
||||
for i = 1:n2
|
||||
last_pt = map_pts(2*i - 1, :);
|
||||
mapped = [last_pt(1), map(last_pt(1))];
|
||||
on_the_line = [mapped(2), mapped(2)];
|
||||
|
||||
map_pts(2*i, :) = mapped;
|
||||
map_pts(2*i + 1, :) = on_the_line;
|
||||
end
|
||||
|
||||
% plot it
|
||||
figure;
|
||||
hold on;
|
||||
plot(x, y_map, 'b');
|
||||
plot(x, y_line, 'k');
|
||||
plot(map_pts(:, 1), map_pts(:, 2), 'r');
|
||||
|
||||
start = map_pts(1, :);
|
||||
scatter(start(1), start(2), 'r');
|
||||
text(start(1) + .03, start(2) + .03, 'Start Point');
|
||||
|
||||
xlim([0 pi]);
|
||||
xticks([0 pi/2 pi]);
|
||||
ylim([0 2.1]);
|
||||
xticklabels({'0', '\pi/2', '\pi'});
|
||||
|
||||
title('Cobweb of \(2 \sin x\)', 'Interpreter', 'latex');
|
||||
|
||||
%% Orbit Diagrams
|
||||
% The above example was... not too crazy. The map x → α sin x *can* exhibit
|
||||
% more complex behavior, but it requires α to be greater than π (so that we can
|
||||
% escape the [0, π] interval). The map will first stay close to two points,
|
||||
% then a few, then... altogether too many. This is usually plotted with what is
|
||||
% called an orbit diagram, showing roughly how much time the map spends at
|
||||
% certain values for a given α.
|
||||
|
||||
map_alpha = @(alpha, x) alpha.*sin(x);
|
||||
|
||||
n3 = 6e2; % iterations to go through
|
||||
frames = 9e2; % run this many parallel alpha computations
|
||||
toss = 2e2; % delete this many points from the start
|
||||
|
||||
min_alpha = 2.2;
|
||||
max_alpha = 3.1;
|
||||
alphas = linspace(min_alpha, max_alpha, frames);
|
||||
|
||||
% at least we can run the frames in parallel...
|
||||
values = zeros(n3, frames);
|
||||
values(1, :) = pi/4; % the first input each time
|
||||
for i = 2:n3
|
||||
values(i, :) = map_alpha(alphas, values(i - 1, :));
|
||||
end
|
||||
|
||||
% plot this crazy thing
|
||||
values = values((toss + 1):end, :);
|
||||
figure;
|
||||
scatter(alphas.', values, 1, [.7 0 0], 'MarkerEdgeAlpha', .3);
|
||||
|
||||
title('Orbit of \(\alpha \sin x\)', 'Interpreter', 'latex');
|
||||
xlabel('\alpha');
|
||||
ylabel('map value');
|
||||
|
||||
%% The Phase Plane
|
||||
% In continuous time, we have differential equations rather than iterated maps.
|
||||
% One way to analyze higher-order equations is using the so-called phase plane,
|
||||
% which is a plot of our state variable and its derivative. The idea is that a
|
||||
% second-order differential equation really acts like a system in two
|
||||
% dimensions, and is best analyzed directly as such.
|
||||
|
||||
% We'll analyze the motion of an damped pendulum, which has the governing
|
||||
% equation d²θ/dt² + b dθ/dt + (g/L) sin θ = 0. For simplicity (it won't change
|
||||
% the qualitative behavior), we'll let g/L = 1. Then (the phase plane bit)
|
||||
% we break this into two differential equations,
|
||||
% * dθ/dt = ω and
|
||||
% * dω/dt = -(sin θ + bω),
|
||||
% and make a plot of the *vector* (dθ/dt, dω/dt) in θ-ω space. We can easily
|
||||
% plot the vector field with `quiver`, and MATLAB's `streamline` is rather
|
||||
% effective at plotting either single trajectories or a whole suite of possible
|
||||
% solutions.
|
||||
|
||||
b = .2;
|
||||
min_theta = -3*pi;
|
||||
max_theta = 3*pi;
|
||||
min_omega = -3*pi;
|
||||
max_omega = 3*pi;
|
||||
theta_range = linspace(min_theta, max_theta, 300);
|
||||
omega_range = linspace(min_omega, max_omega, 200);
|
||||
[theta, omega] = meshgrid(theta_range, omega_range);
|
||||
theta_dot = omega;
|
||||
omega_dot = -(sin(theta) + b*omega);
|
||||
|
||||
% to cut down on the # of points we plot
|
||||
d = 10;
|
||||
[sparse_x, sparse_y] = ...
|
||||
meshgrid(d:d:length(theta_range), d:d:length(omega_range));
|
||||
sparse = sub2ind(size(theta), sparse_y(:), sparse_x(:));
|
||||
|
||||
% plot this thing
|
||||
figure;
|
||||
hold on;
|
||||
quiver(theta(sparse), omega(sparse), ...
|
||||
theta_dot(sparse), omega_dot(sparse), 'm');
|
||||
streamline(theta, omega, theta_dot, omega_dot, ...
|
||||
theta(sparse_y, [1 end]), omega(sparse_y, [1 end]));
|
||||
|
||||
xlim([min_theta max_theta]);
|
||||
xticks(linspace(min_theta, max_theta, 7));
|
||||
ylim([min_omega max_omega]);
|
||||
|
||||
xlabel('pendulum angle');
|
||||
ylabel('angular velocity');
|
||||
title('Behavior of a Damped Pendulum', 'Interpreter', 'latex');
|
||||
|
||||
%% Strange Attractors
|
||||
% I won't go into detail here -- suffice it to say the behavior of this system
|
||||
% would be quite opaque without numerical integration. Fortunately, we have
|
||||
% just that! Lorenz managed to prove analytically that this system had no
|
||||
% closed cycles and yet all its trajectories eventually stayed within a bounded
|
||||
% region of space, but beyond that... well, we'll see.
|
||||
sigma = 10;
|
||||
r = 28;
|
||||
b = 8/3;
|
||||
|
||||
x_dot = @(x, y, z) sigma*(y - x);
|
||||
y_dot = @(x, y, z) r*x - y - x.*z;
|
||||
z_dot = @(x, y, z) x.*y - b*z;
|
||||
|
||||
[x, y, z] = meshgrid(linspace(-50, 50, 100));
|
||||
u = x_dot(x, y, z);
|
||||
v = y_dot(x, y, z);
|
||||
w = z_dot(x, y, z);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
streamline(x, y, z, u, v, w, 0, 1, 0, [.1 2e4]);
|
||||
scatter3(0, 1, 0);
|
||||
view(3);
|
||||
grid on;
|
||||
|
||||
text(0, 0, -2, 'Start Point');
|
||||
xlabel('x');
|
||||
ylabel('y');
|
||||
zlabel('z');
|
||||
title("Lorenz's Strange Attractor", 'Interpreter', 'latex');
|
Loading…
x
Reference in New Issue
Block a user